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Estimating Variance 
Components

• Many ways to do it
– ANOVA
– Regression (developed for estimating h2!)

• For large unbalanced data sets with 
complex pedigrees: Linear Mixed Models

• Fixed
– Experimental/population specific effects

• Random
– Variables randomly sampled, e.g., individuals 

randomly sampled from a population



The “Animal Model”
• y = Xβ + Za + e

y = (nx1) vector of phenotypes (n = sample size)
β = (px1) vector of fixed effect regression 

coefficients (p = number of fixed effects) (FIXED)
X = (nxp) design matrix relating y to β (FIXED)
a = (qx1) vector of additive effects (q = number

of individuals in the pedigree) (RANDOM)
Z = (nxq) design matrix relating y to a (RANDOM)
e =  (nx1) vector of errors

• Solve for β and a
• Assume

Var(e) = Iσe
2 (errors are independent)

Var(a) = Aσa
2 (var of a depends on relationship matrix A)

cov(a,e) = 0
α = σe

2/ σa
2 is known (!!!!) (need a starting point)



Henderson’s Mixed Model 
Equation 

X’X X’Z β X’y
Z’X Z’Z+A-1α a Z’y

y = (nx1) vector of phenotypic measures = KNOWN
β = (px1) vector of fixed effect regression coefficients (FIXED) = UNKNOWN
X = (nxp) design matrix relating y to β (FIXED) = KNOWN
a = (qx1) vector of additive effects (q = number of individuals in the pedigree) 
(RANDOM) = UNKNOWN
Z = (nxq) design matrix relating y to a (RANDOM) = KNOWN
A relationship matrix = KNOWN = (q x q) matrix where q = number of 
individuals in the pedigree
α = σe

2/σa
2 = ESTIMATED

=



Henderson’s Mixed Model 
Equation 

X’X X’Z β X’y
Z’X Z’Z+A-1α a Z’y

so

β X’X X’Z X’y
a          Z’X Z’Z+A-1α Z’y

=

=

-1



Ex: Data and System of Linear Equations
id Sire Dam Herd Ptype
1 - - 1 78
2 - - 2 83
3 - - 2 70
4 2 1 1 86
5 2 3 2 77

78 = herd1 + animal1 + error1

83 = herd2 + animal2 + error2

70 = herd2 + animal3 + error3

86 = herd1 + animal4 + error4

77 = herd2 + animal5 + error5



Ex: Data and Knowns
id Sire Dam Herd Ptype
1 - - 1 78
2 - - 2 83
3 - - 2 70
4 2 1 1 86
5 2 3 2 77

78 1 0 1 0 0 0 0
83 0 1 0 1 0 0 0

y =  70 X =  0  1 Z =   0 0 1 0 0
86 1 0 0 0 0 1 0
77 0 1 0 0 0 0 1 Note: Z = I



Ex: Data and Unknowns
id Sire Dam Herd Ptype
1 - - 1 78
2 - - 2 83
3 - - 2 70
4 2 1 1 86
5 2 3 2 77

a1

a2

a =  a3 β = h1

a4 h2

a5

Assume h2 = .33, so  α = σe
2/ σa

2 = 2.0



Example: Data and “A” Matrix
id Sire Dam Herd Ptype
1 - - 1 78
2 - - 2 83
3 - - 2 70
4 2 1 1 86
5 2 3 2 77

1 2 3 4 5
1 1
2 0 1

A = 3 0 0 1
4 ½ ½ 0 1
5 0 ½ ½ ¼ 1



Henderson’s Mixed Model 
Equation 

X’X X’Z β X’y
Z’X Z’Z+A-1α a Z’y

so

β X’X X’Z X’y
a          Z’X Z’Z+A-1α Z’y

=

=

-1



Henderson’s Mixed Model 
Equation 

X’X = 
1 0 0 1 0        1 0
0 1 1 0 1        0 1    =     2 0

0 1           0 3
1 0
0 1 



Henderson’s Mixed Model 
Equation 

β X’X X’Z X’y
a          Z’X Z’Z+A-1α Z’y=

-1



Henderson’s Mixed Model 
Equation 

X’Z =
1 0 0 1 0       1 0 0 0 0
0 1 1 0 1       0 1 0 0 0

0 0 1 0 0 =
0 0 0 1 0
0 0 0 0 1

1 0 0 1 0
0 1 1 0 1



Henderson’s Mixed Model 
Equation 

β X’X X’Z X’y
a          Z’X Z’Z+A-1α Z’y=

-1



Henderson’s Mixed Model 
Equation 

Z’X = IX =

1 0
0 1
0 1
1 0
0 1



Henderson’s Mixed Model 
Equation 

β X’X X’Z X’y
a          Z’X Z’Z+A-1α Z’y=

-1



Henderson’s Mixed Model 
Equation 

Z’Z+A-1α =

1 0 0 0 0 1.5  0.5  0  -1  0       4 1 0 -2 0
0 1 0 0 0 0.5  2  0.5  -1  -1      1 5 1 -2 -2
0 0 1 0 0   +2.0 * 0  0.5  1.5  0  -1 =    0 1 4 0 -2
0 0 0 1 0 -1  -1  0  2  0            -2 -2 0 5 0
0 0 0 0 1 0  -1  -1  0  2             0 -2 -2 0 5



Henderson’s Mixed Model 
Equation 

β X’X X’Z X’y
a          Z’X Z’Z+A-1α Z’y=

-1



Henderson’s Mixed Model 
Equation 

X’y =
1 0 0 1 0 78
0 1 1 0 1 83 164

70 = 230
86
77



Henderson’s Mixed Model 
Equation 

β X’X X’Z X’y
a          Z’X Z’Z+A-1α Z’y=

-1



Henderson’s Mixed Model 
Equation 

Z’y = Iy = 78
83
70
86
77



β X’X X’Z X’y
a          Z’X Z’Z+A-1α Z’y

h1 2 0 1 1 0 0 0 164
h2 0 3 0 0 1 1 1 230
a1 1 0 4 1 0 -2 0 78
a2 1 0 1 5 1 -2 -2 83
a3 0 1 0 1 4 0 -2 70
a4 0 1 -2 -2 0 5 0 86
a5 0 1 0 -2 -2 0 5 77

=

-1
Ex: Solving the Mixed Model Equation

=

-1



Ex: Solutions

h1 = 79.17
h2 = 77.77
a1 =   0.53
a2 =   2.13
a3 =  -2.66
a4 =   2.71
a5 =  -0.37



Additional Effects

• More fixed effects: Just increases the 
length of Beta = very easy

• More random effects: each one adds a 
new term consisting of a vector of random 
effects times a design matrix
– Example: add maternal environmental effects 



“Animal Model” with Maternal Effects

• y = Xβ + Za + Wm + e
y = (nx1) vector of phenotypic measures
β = (px1) vector of fixed effect regression 

coefficients (FIXED)
X = (nxp) design matrix relating y to β (FIXED)
a = (qx1) vector of additive effects (q = number

of individuals in the pedigree) (RANDOM)
Z = (nxq) design matrix relating y to a (RANDOM)
m = (fx1) vector of maternal effects (f = number of dams

in pedigree) (RANDOM)
W = (nxf) design matrix relating y to m (RANDOM)
e =  (nx1) vector of errors

• Solve for β and a and m
• Assume

Var(e) = Iσe
2 (errors are independent)

Var(a) = Aσa
2 (var of a depends on relationship matrix A)

Var(m) = I σm
2 (maternal effects are independent)

cov(a,m) and cov (e,m) are both 0 (a, m, e independent of each other)
σe

2/σa
2  and σe

2/σm
2 are known (need starting points)



Henderson’s Mixed Model 
Equation 

X’X X’Z  X’W β X’y
Z’X   Z’Z + A-1αa Z’W              a            Z’y
W’X W’Z W’W + Iαm m W’y

y = (nx1) vector of phenotypic measures = KNOWN
β = (px1) vector of fixed effect regression coefficients (FIXED) = UNKNOWN
X = (nxp) design matrix relating y to β (FIXED) = KNOWN
a = (qx1) vector of additive effects (q = number of individuals in the pedigree) 
(RANDOM) = UNKNOWN
Z = (nxq) design matrix relating y to a (RANDOM) = KNOWN
A relationship matrix = KNOWN
m = (fx1) vector of maternal effects (f = number of dams

in pedigree) (RANDOM)
W = (nxf) design matrix relating y to m (RANDOM)
I = identity matrix
αa = σe

2/σa
2 = ESTIMATED; αm = σe

2/ σm
2 = ESTIMATED

=



Likelihood Approach
• Likelihood = Pr(y|μ, σ2) = conditional 

probability of the data (y) given the 
parameters:
μ = Xβ
σ2 = Z(Aσa

2 )Z’+ Iσe
2

genetic variance + error variance
• Iterations: 

(σe
2/ σa

2)sv -> ai -> (σe
2/σa

2)i
(σe

2/ σa
2)i -> aj -> (σe

2/σa
2)j

(σe
2/ σa

2)j -> ak -> (σe
2/σa

2)k

• Rinse & Repeat until parameters stabilize



Bayesian Approach
• Pr(μ, σ2|y) = conditional probability of the 

parameters given the data
– Yay! More intuitive than Likelihood

• Except that it is proportional to:
Pr(y|μ, σ2)Pr(μ, σ2)
(Likelihood)(Prior belief in possible parameter values)

• Produces a posterior distribution = 
probabilistic distribution associating each 
value of a parameter to a probability

• Need iterative process to solve: MCMC



Markov Chain Monte Carlo
• Algorithm based on the proposal of a new 

value for a parameter, as a function of the 
value of the other parameters, at each 
iterative step. 

• Saving the value of the parameter at each 
iteration, we ultimately get a series of 
values, which is the posterior distribution 
of interest, i.e., a posterior probability 
distribution for each parameter.



Non-Gaussian Traits
• For a continuous trait, if family 

relationships in the population are 
known, and assuming many loci of 
small effect, the phenotypic variance 
can be partitioned:
– VP = VG+VE

• But what if the trait of interest 
is not continuous or is 
non-Gaussian? How can we 
estimate variance components?

Trait
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Generalized Linear Mixed 
Model (GLMM)

• Combination of Generalized Linear Models 
and Linear Mixed Models

• Can handle non-Gaussian traits
– Requires use of a link function (e.g., 

probability density function for binary 
outcomes) otherwise still…

• An “Animal Model”
• y = Xβ + Za + e

• Requires Bayesian approaches



Need priors (usually choose uninformative)
Long runs
Difficult assessment of runs

MCMCglmm

Can estimate variance components for any 
Gaussian or non-Gaussian trait
Can have any number of fixed or random 
effects
Can handle complex pedigrees
Very flexible


