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The “Animal Model”

(nx1) vector of phenotypes (n = sample size)
(px1) vector of fixed effect regression
coefficients (p = number of fixed effects) (FIXED)
= (nxp) design matrix relating y to B (FIXED)
= (gx1) vector of additive effects (g = number
of individuals in the pedigree) (RANDOM)
Z = (nxq) design matrix relating y to a (RANDOM)
e = (nx1) vector of errors

* Solve for [3 and a

 Assume
Var(e) = 10,2 (errors are independent)
Var(a) = Ac,? (var of a depends on relationship matrix A)
cov(a,e)=0
a = 0.2/ 0,%is known (') (need a starting point)



Henderson's Mixed Model

Equation
XX xz | |B Xy
ZX ZZ+A'al | a| | Zy

(nx1) vector of phenotypic measures = KNOWN

(px1) vector of fixed effect regression coefficients (FIXED) = UNKNOWN
(nxp) design matrix relating y to B (FIXED) = KNOWN

(gx1) vector of additive effects (g = number of individuals in the pedigree)
(RANDOM) = UNKNOWN

Z = (nxq) design matrix relating y to a (RANDOM) = KNOWN

A relationship matrix = KNOWN = (q x q) matrix where g = number of
individuals in the pedigree
a=0,%0,2=ESTIMATED
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Henderson’'s Mixed Model

SO

Equation
XX xz | |B Xy
ZX ZZ+A'al | a| | Zy
- B
3 XX X'Z X'y

a | |ZX ZZ+A'a| |Zy



Ex: Data and System of Linear Equations

Id Sire Dam Herd Ptype
1 - - 1 /8
2 - - 2 83
3 - - 2 70
4 2 1 1 86
5 2 3 2 77

/8 = herd, + animal, + error,
83 = herd, + animal, + error,
70 = herd, + animal; + error;
86 = herd, + animal, + error,
/7 = herd, + animal; + error;




Ex: Data and Knowns

Id Sire Dam Herd Ptype
1 - - 1 /8
2 - - 2 83
3 - - 2 70
4 2 1 1 86
5 2 3 2 77

78 10 10000

83 01 01000
y=[70 | X=|0 1] Z={00100

86 10 00010

7T _ 101 1 00001J) Note:Z=1




Ex: Data and Unknowns

id Sire Dam Herd Ptype
1 - - 1 /8
2 - - 2 83
3 - - 2 70
4 2 1 1 86
5 2 3 2 77
—a1 _
a, —
a = as B =h,
a, h,
L ag | -

Assume h? = .33,s0 a=0./0,2=2.0
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Example: Data and “A” Matrix

Sire

OO &~ WODN -

Dam Herd
- 1
- 2
- 2
1 1
3 2

1 2 3 4

1

0 1

0 0 1

Z: Z: 0 1

0 Z: Z: Ya

Ptype
/8
83
70
86
77



Henderson’'s Mixed Model

SO

Equation
XX xz | |B Xy
ZX ZZ+A'al | a| | Zy
- B
3 XX X'Z X'y

a | |ZX ZZ+A'a| |Zy
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Henderson’'s Mixed Model
Equation

10010

01101

10
0 1
0 1
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Henderson’'s Mixed Model
Equation

1

XX XZ Xy
ZX ZZ+A'a|l |Zy




Henderson’'s Mixed Model
Equation
X'Z =
10010/ [10000°
01101 |01000
: 100100

00010
00001




Henderson’'s Mixed Model
Equation

1

XX XZ Xy
ZX ZZ+A'a|l |Zy




Henderson’'s Mixed Model
Equation




Henderson’'s Mixed Model
Equation

1

XX XZ Xy
ZX ZZ+A'a|l |Zy




Henderson’'s Mixed Model

Equation
77+A 0 =
100007 1.5 050 -10] [410-20 |
01000 0.5 2 0.5 -1 -1 151-2-2
00100 +20*0 0.5 150 1= 0140-2
00010 -1-1020 -2-2050
00001, 0-1-102 | | 0-2-20395




Henderson’'s Mixed Model
Equation

1

XX XZ Xy
ZX ZZ+A'a|l |Zy




Henderson’'s Mixed Model

Equation
10010 (78" i
01101 83 N
: ) 70 | =

86 -
77 .




Henderson’'s Mixed Model
Equation

1

XX XZ Xy
ZX ZZ+A'a|l |Zy




Henderson's Mixed Model
Equation

Zy=1y=[7/8]

83

70

86

/7




— 151-2-2

XX XZ

ZX ZZ+A'al | Zy

-1

20 g
03
410-20

0140-2
-2-2050

0-2-205

Ex: Solving the Mixed Model Equation
-1

PX’yR

164

230
/8
83
70
86

A




h,=79.17
h,=77.77
a, = 0.53
a,= 213
a, = -2.66
a,= 2.7

-0.37

Q)
o
[

Ex: Solutions



Additional Effects

 More fixed effects: Just increases the
length of Beta = very easy

* More random effects: each one adds a
new term consisting of a vector of random
effects times a design matrix

— Example: add maternal environmental effects



“Animal Model” with Maternal Effects

e y=XB+ Za+Wm+e
y = (nx1) vector of phenotypic measures
B = (px1) vector of fixed effect regression
coefficients (FIXED)
X = (nxp) design matrix relating y to f (FIXED)
= (gx1) vector of additive effects (q = number
of individuals in the pedigree) (RANDOM)
Z = (nxq) design matrix relating y to a (RANDOM)
= (fx1) vector of maternal effects (f = number of dams
in pedigree) (RANDOM)
W = (nxf) design matrix relating y to m (RANDOM)
e = (nx1) vector of errors

 Solvefor 3 and aand m

Assume
Var(e) = Io (errors are independent)
Var(a) = (var of a depends on relationship matrix A)

(a
Var(m) = I o 2 (maternal effects are independent)
cov(a,m) and cov (e m) are both 0 (a, m, e independent of each other)
0,%/ 0,2 and 0%/ 0,2 are known (need starting points)



Henderson's Mixed Model

Equation
XX X'Z X'W — 8] | xy
ZX ZZ+Aa, ZW| = | a 2’y
WX WZ WW + o, m] Wy

y = (nx1) vector of phenotypic measures = KNOWN

B = (px1) vector of fixed effect regression coefficients (FIXED) = UNKNOWN
X = (nxp) design matrix relating y to B (FIXED) = KNOWN

a = (gx1) vector of additive effects (g = number of individuals in the pedigree)
(RANDOM) = UNKNOWN

Z = (nxq) design matrix relating y to a (RANDOM) = KNOWN

A relationship matrix = KNOWN

m = (fx1) vector of maternal effects (f = number of dams
in pedigree) (RANDOM)

W = (nxf) design matrix relating y to m (RANDOM)

| = identity matrix

a, = 0.2 0,2 =ESTIMATED; o, =0.% 0,2 = ESTIMATED



Likelihood Approach

* Likelihood = Pr(y|u, 02) = conditional
probability of the data (y) given the
parameters:
b= Xp
0°=2Z(Aoc_%2)Z’+ lo 2

genetic variance + error variance
* |terations:
(0.2 0.2)qy -> a; > (0.2 0,%)
(Gezl O-az)i > aj = (Gezl O-az)j
(Gezl 0-az)j = ak = (Gezl Gaz)k
* Rinse & Repeat until parameters stabilize



Bayesian Approach

 Pr(u, 02]y) = conditional probability of the
parameters given the data

— Yay! More intuitive than Likelihood
* Except that it is proportional to:
Pr(y|u, o%)Pr(u, o)

(Likelihood)(Prior belief in possible parameter values)

* Produces a posterior distribution =
probabilistic distribution associating each
value of a parameter to a probability

* Need iterative process to solve: MCMC



Markov Chain Monte Carlo

* Algorithm based on the proposal of a new
value for a parameter, as a function of the
value of the other parameters, at each
iterative step.

» Saving the value of the parameter at each
iteration, we ultimately get a series of
values, which Is the posterior distribution
of interest, i.e., a posterior probability
distribution for each parameter.



Non-Gaussian Traits

* For a continuous trait, if family
relationships in the population are
known, and assuming many loci of
small effect, the phenotypic variance
can be partitioned:

— Vp = V+Ve

« But what if the trait of interest
IS not continuous or is
non-Gaussian? How can we
estimate variance components?
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Generalized Linear Mixed
Model (GLMM)

Combination of Generalized Linear Models
and Linear Mixed Models

Can handle non-Gaussian traits

— Requires use of a link function (e.g.,
probability density function for binary
outcomes) otherwise still...

An “Animal Model”

cy=Xp+Za+te

Requires Bayesian approaches



MCMCglmm

. Very flexibl




