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Genetic covariances are important for

evolution

selection on one trait will lead to a correlated response

in the other
can accelerate evolution
can slow evolution

can prevent evolution?

Trait 2

Positive Genetic Correlation Negative Genetic Correlation

Trait 2
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Figure 2: Traits may have a positive genetic correlation (left) or a negative genetic correlation (right).




Let’s us answer important and interesting
guestions...

 can this population adapt to ecological change, or will it go extinct?
* is the evolutionary response in my favourite trait constrained?
* do diseases commonly co-occur? which ones?

* what is the degree of integration of a phenotype (or how many independent
genetic dimensions underly an organism)

* will my award-winning racehorse have good sons and good daughters?



Topics we will cover:

* Multivariate quantitative genetics
1. Pleiotropy & Genetic correlations
2. The G matrix

3. Genetic constraints

* Selection
1. Empirical methods to estimate selection
2. Empirical results



Key Take Aways:

e genetic variation is unevenly distributed across multivariate trait
combinations because of pleiotropy

* the uneven distribution of genetic variance can lead to evolutionary
constraints

* we can estimate selection on multiple traits using linear or quadratic
regression approaches



Some historical context...

* Quantitative genetics wasn’t a major focus in evolutionary research
until the 1970’s/1980’s

* Evolutionary quantitative genetics happened in 2 steps
1. Lande’s papers in the late 70’s

2. Operational framework to estimate selection in natural populations
(eg. Lande and Arnold 1983)



Breeder’s vs Lande equation

Breeder’s equation

Lande equation



Topics we will cover:

1. Pleiotropy & Genetic correlations



Phenotypic correlation between
traits

Breeders believe that long limbs are almost always accompanied by an elongated head. Some instances of
correlation are quite whimsical; thus cats with blue eyes are invariably deaf; ... Hairless dogs have imperfect teeth;
long-haired and coarse-haired animals are apt to have, as is asserted, long or many horns; pigeons with feathered
feet have skin between their outer toes; pigeons with short beaks have small feet, and those with long beaks large
feet. Hence, if man goes on selecting, and thus augmenting, any peculiarity, he will almost certainly unconsciously
modify other parts of the structure, owing to the mysterious laws of the correlation of growth.

— Charles Darwin, The Origin of Species, 1859



https://en.wikipedia.org/wiki/Charles_Darwin
https://en.wikipedia.org/wiki/The_Origin_of_Species

Phenotypic correlation between traits

* phenotypic correlations can be caused by environmental factors

e variation in resource availability can lead to a positive correlation
between the size of all appendages

 environmental cue to initiate the allocation of resources to
reproduction causes a curtailment in growth

 Can also cause correlations between traits and fitness



The environmental correlation
between traits

Trait 2

Trait 1



The genetic and environmental
correlation between traits

A

Trait 2

Trait 1



Unintended effects from breeding-
double muscling

* some beef cattle show extraordinary muscle

* caused by mutations in myostatin genes

* has been selected for in Belgian blue cattle- they
produce 20% more lean edible meat than other cattle

* leads to problems with stress tolerance, fertility, and
calf viability



Unintended effects from breedmg-
Super-chickens =

 artificial selection for egg laying- individual level
selection

e over time they produced fewer eggs- pleiotropic side
effect of aggression

* they pecked each other to death
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* most traits have a polygenic genetic architecture

e if there are many more phenotypes than genotypes (and there are-
the genome is finite and the phenome is not) AND most traits are
affected by many genes, then most genes must affect many traits

I KO PPy ] | T



Omnigenic model

 human gene regulatory networks are so interconnected that
thousands of individual genes contribute at least slightly to
the phenotype (infinitesimal model)

e variation in one part of the genome can have indirect effects on any
other trait (universal pleiotropy)

I”

* “peripheral” genes far outnumber core genes and contribute much
more to a trait’s heritability



LD causes genetic correlations

* linkage disequilibrium is a measure of whether an allele at one locus
is found more often with an allele at another locus

* can be caused by physical linkage

Phenotypic traits

Gene A Gene B

Wagner, G., Zhang, J. The pleiotropic structure of the genotype—phenotype map: the evolvability of complex organisms. Nat Rev Genet 12,204-213 (2011).
https://doi.org/10.1038/nrg2949



LD causes genetic correlations

e over time LD caused by physical linkage will decay due to
recombination

= ;7 Chromosome

| |
| I

Distance




Decay of LD with time

Linkage disequilibrium coefficient (D)

Time (generations)

6 Recombination and linkage disequilibrium in evolutionary signatures in A Primer of Molecular Population Genetics,

https://doi.org/10.1093/0s0/9780198838944.003.0006 » OXFORD

UNIVERSITY PRESS
The content of this slide may be subject to copyright: please see the slide notes for details.


https://doi.org/10.1093/oso/9780198838944.003.0006

LD causes genetic correlations

e can be caused by ‘statistical linkage’

* selection can maintain LD (eg. non-random mating; covariance
between traits and preference; others?)

Chromosome 1

* One generation of random mating will =
restore linkage equilibrium

‘ Chromosome 2



Pleiotropy causes genetic correlations

* pleiotropy occurs when a gene/allele affects more than one trait

Phenotypic traits

Wagner, G., Zhang, ). The pleiotropic structure of the genotype—phenotype map: the evolvability of complex organisms. Nat Rev Genet 12, 204—213 (2011). https://doi.org/10.1038/nrg2949



Pleiotropy causes genetic correlations

 defining pleiotropy (at least intuitively) is easy- measuring it is not!

* how to distinguish between a pleiotropic mutation and two closely linked
mutations?

Phenotypic traits Phenotypic traits

M




The additive genetic covariance/correlation
between traits

* [et’s assume that most genetic correlation is caused by
pleiotropy....seems like a reasonable assumption



Is pleiotropy a property of a mutation or a gene? Which of these are
pleiotropy?

Phenotypic traits

MRNA sttty -t e o e
Translation Translation

Protei A Protein B Protei G




Is pleiotropy a property of a mutation or a gene? Which of these are
pleiotropy?

Tissue?
Brain Brain? Promoter?
Sleep i | Habituation Learning and memory
iy Q) Stress response
4F>

prl pr2 pr3 pr4

ED E’ 5 > 5. 3 D}DDD foraging

. T , ?
Brain Brain or gut? Fat body? Brain or gut?
4

py-_ . 0 e o Brain and

¢ T ’ Bl 2 2" b ovaries
e e — JF.H#' .
. . Food intake
Nociception Path length Fat stores and feeding

Figure 2

Pleiotropic effects of foraging’s promoters. In Drosophila, each of the foraging gene’s promoters regulates distinct behavioral phenotypes
in a variety of tissues. Promoter 1 regulates larval nociception (via expression in a neuronal circuit) (21), larval path length (tissue
uncertain) (2), and adult sleep (mushroom bodies) (27). Promoter 3 affects fat stores in larvae (tissue uncertain) (2). Habituation is
regulated by promoter 1, 3, or both (in olfactory receptor neurons and mushroom bodies) (29). Promoter 4 regulates feeding behavior
(adult female brain or ovaries) (5) and in larvae (tissue uncertain) (2). Promoter 2 has so far not been associated with a phenotype;
different forms of learning and memory and stress response regulated by foraging have not yet been associated with specific promoters
or their associated tissues. Abbreviation: pr, promoter.

Anreiter |, Sokolowski MB. 2019. The foraging gene and its behavioral effects: pleiotropy and plasticity. Annual Review of Genetics 53:373-392. DOI


https://doi.org/10.1146/annurev-genet-112618-043536

The degree of pleiotropy depends on the
definition of a trait

what if we define the trait as the um of tail length

a and femur length (‘FeTail’)?
» Pleiotropic effect on two traits

b 0 L -
»
»
.
¥
o
c
_S L 3 s 4
T-;:
TaFemur’ ‘FeTail’

Femur length

Wagner, G., Zhang, J. The pleiotropic structure of the genotype—phenotype map: the evolvability of complex organisms. Nat Rev Genet 12,204-213 (2011). https://doi.org/10.1038/nrg2949



The degree of pleiotropy depends on the
deflﬂltIOﬂ Of a tralt gene expression
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|dentifying/Quantifying pleiotropy

* through gene knockdown studies
* through GWAS

* by studying patterns of genetic variation in multiple dimensions



Gene-knockdown studies
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GWAS studies

 find the SNPs that are significantly associated with each of your
favourite traits

e count the SNPs that are significantly associated with each pair

* power issues for most studies



GWAS studies

Heatmap shows the
proportion of SNPs
that are significantly
associated with both
traits
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Phenotype

Neurological phenotypes
Alzheimer disease
Migraine

Schizophrenia
Anthropometric and social traits
Beighton hypermobility
Breast size

Body mass index
Educational attainment
Height

Male-pattern baldness
Nearsightedness

Nose size

Waist—hip ratio

Unibrow

Immune-related traits
Any allergies

Asthma

Childhood ear infections
Crohn's disease
Hypothyroidism
Rheumatoid arthritis
Metabolic phenotypes
Age at menarche

Age at menarche (23andMe)
Triglycerides

Total cholesterol
Hematopoietic traits
Hemoglobin

Mean cell hemoglobin concentration

Platelet count

Pickrell, J., Berisa, T., Liu, J. et al. Detection and interpretation of shared genetic influences on 42 human traits. Nat Genet 48, 709—-717 (2016). https://doi.org/10.1038/ng.3570 Mean platelet volume



GWAS studies

Univariate — PC1

(O)

2 © —

©

>

Q <«

(@)

L=

X 2L 2R 3L 3R _

Only one SNP in common
in two analyses

()

2 © —

©

>

O <« -

(@)

2 .

X oL oR 3L 3R

Pitchers, W., Nye, J., Marquez, E.J., Kowalski, A., Dworkin, |. and Houle, D., 2019. A multivariate genome-wide association study of wing shape in Drosophila melanogaster. Genetics, 211(4), pp.1429-1447.



Questions?



Topics we will cover:

2. The G matrix



How to estimate genetic variance using
relatedness information

There are a number of factors that can lead to similarity among relatives eg. Common environment,
maternal effects, GENETICS

If phenotypic variation has a genetic basis, then relatives will appear more similar than non-relatives, and
the closer the relative the more similar they will appear

We can use information about the covariance between relatives to partition phenotypic variation into
genetic and non-genetic components (and different types of genetic components



How to estimate genetic variance using
relatedness information

Relatives are more likely to share alleles than non-relatives

What you really mean is that you share alleles with your relatives that are IDENTICAL BY DESCENT (IBD)

IBD means the same alleles can be traced to a common ancestor



How to estimate genetic variance using relatedness information

e |BD means that a gene is a direct descendent of a specific gene carried by some ancestral individual.

e different than identical/alike by state (IBS/AIS) which means the allele is the same but they have descended
from different copies in the reference population



How to estimate genetic variance using relatedness information

No alleles IBD One allele IBD
JDF‘D';QOJ:?] b@b

Both alleles IBD Qe ol ) 5




Coefficients of Coancestry and Relatedness

e We need to figure out these weights for any type of relatives

e Path counting— identifies the path linking individuals, lets you calculate the probability that their alleles are

IBD (coefficient of coancestry) 5
pr

A" B
>,<><\ k)
ny g J

Ory= (1)~ (LP =74

e Coefficient of relatedness is 2X the coefficient of coancestry because it takes into account that either pair of
alleles can be shared



Coefficients of Coancestry and Relatedness

e We need to figure out these weights for any type of relatives

CADE T () =L
EC_SZD‘;: Oce = (3)° + (2) =%
CoaMorerr § MClitelney



How to estimate genetic variance
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Alastair J. Wilson, et al (2010) An ecologist's guide to the animal model. Journal of
Animal Ecology, 79, 13-26.



How to estimate genetic variance
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Additive genetic variance: V,




Heritability o

Drosophila — morphological traits (REF. 107) Bl Only one environment reported
Daphnia — body size (REF. 108) [l Better environment
Altantic salmon — marine-stage weight (REF. 109) [[] Poorer environment
Atlantic salmon — freshwater-stage weight (REF. 109) | |
* Most traits have heritabil ity between Birds — tarsus length (REF. TI0) __
20-60% Birds — tarsus length (REF. 10} | |

Animal species in the wild — morphological (REF. 1)

Cattle — yearling weight (REF. 112)

Human — height Finland born 1947-57 (REF. 113}
Human — height Finland born <1929 (REF. T13) |

* Heritability is higher for
morphological traits than for life-
history or fitness related traits

Fitness traits

Drosophila — life-history traits (REF. 107) |

Daphnia — clutch size (REF. 108)

Rainbow Trout — alevin survival (REF. Ti4)

Cattle — calving success (REF. 112)

Cattle — bull fertility (REF. 112)

Pigs — number of piglets born alive (REF. T15)

Animal species in the wild — life-history traits (REF. 111)

| | | | | | | | |
02 03 04 05 0.6 07 0.8 09

Heritability

D—
=
it

Hoffmann, A.A., Merila, J. and Kristensen, T.N., 2016. Heritability and evolvability of fitness and nonfitness traits: lessons from
livestock. Evolution, 70(8), pp.1770-1779



How to estimate genetic variance
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Alastair J. Wilson, et al (2010) An ecologist’s guide to the animal model. Journal of
Animal Ecology, 79, 13-26.




How to estimate genetic variance using genomic information

Individual 1 | Individual 2
Genomic information (sequencing data) can

also be used to estimate relatedness 1 00 10
2 10 00

Treat identity by state (IBS, AlS) as identity by

descent (IBD) 3 01 01
4 11 11
5 11 01
6 01 10

7 10 10



Genomic Relatedness Matrices

ww'

GRM,pp =
ADD™ trace(WW') / n

W is @ marker matrix
n is the number of individuals



How to estimate genetic variance "

I%{:X,b’——zl +7Z d+1e

Additive genetic variance: V,



How to estimate genetic variance using relatedness information

Histogram of the genome-wide additive genetic
relationships of full-sib pairs estimated from genetic

Coefficients of relatedness can be greater than 1 with markers.
inbreeding, non-random mating etc

250—

Also remember these are expected values!

200— M
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Genomic relatedness can differ quite dramatically from
the expected values I

100 B

50—

0.35 0.40 0.45 0.50 0.55 0.60 0.65
Actual Relationship

Visscher PM, Medland SE, Ferreira MAR, Morley Kl, Zhu G, Cornes BK, et al. (2006) Assumption-Free Estimation of Heritability from Genome-Wide Identity-by-
Descent Sharing between Full Siblings. PLoS Genet 2(3): e41.



Difference between pedigree and GRM

* Pedigree is based on IBD
* GRM is based on IBS

* Pedigree contains expected values of relatedness

* GRM contains actual values of relatedness which can differ from
expected values due to segregation



Difference between pedigree and GRM
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Difference between pedigree and GRM

* Pedigree relationship matrix estimates genetic variance for the group
of unrelated founders in the pedigree (ie. base population)

* GRM estimates genetic variance among the set of genotyped
individuals



Difference between pedigree and GRM

* Power for estimating genetic variance comes in part from the
variance in relatedness among individuals

 Low relatedness can lead to biased estimates of additive variance



Difference between pedigree and GRM
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Fraimout, A., Guillaume, F., Li, Z., Sillanpaa, M.J., Rastas, P. and Merila, J., 2024. Dissecting the genetic architecture of quantitative traits using
genome-wide identity-by-descent sharing. Molecular Ecology, 33(6), p.e17299



Difference between pedigree and GRM

* Power for estimating genetic variance comes in part from the
variance in relatedness among individuals

 Low relatedness can lead to biased estimates of additive variance

* Which SNPs are included in GRM can also lead to biased estimates of
variance




Missing heritability

Variants affecting human height:

2008: ~12 SNPs explain ~2% variance
2008: ~30 SNPs explain ~4% variance?
2010: ~180 SNPs explain ~10% variance?
2011: ~200 SNPs explain ~10% variance*
2014: ~700 SNPs explain ~20% variance®

2022: ~12,111 SNPs explain ~50% variance

lLettre, G. et al. (2008) Nat. Genet. 40, 584-591; 2Gudbjartsson et al . (2008) Nat. Genet. 40, 609-615; 3Allen et al (2010) Nature 467, 832—838;
4Zhang G, et al. (2011) PLoS ONE 6(12): e29475' > Wood, A. et al. (2014) Nat. Genet. 46, 1173-1186;



Missing heritability for height has been found

Article

A saturated map of common genetic variants
associated with human height

hitps;fdolorg/ 030381586 022 06275y Commonsingle-nucieatide polymorphismes (SwPs) are predicted to collectively

Y — axpilaln 40-50%of phenatypic varlation in human helght, but identifying the specific
variants and asscclated reglons requires huge sample sizes'. Here, using data from a

ACoopiae 24 August 2002 penome-wide association study of 5.4 million individuals of diverse ancestries, we
Fubilishad online: 12 Octobar 2022 shiow that 12,111 Independent SMPs that are significantly associated with height

Open access account for nearly il of the commion SxP-based heritabibity. These SaPs are clusterad
(3] Chock for updates within 7,209 non-overiapping genomic segments with 2 mean size of around 20 kb,

covering about 21% of the genome, The density of independent assccdathons varkes
ACross the gename and the reglons of increased density are enniched for biclogically

e data from ~5.4 million people

* identified 12,111 genetic variants affecting height that cover ~21% of
the genome

* together explain 50% of the phenotypic variation in height



Missing heritability

h2-hiwae is Offen denoted the “missing” heritability (e.g., 5% vs 80%).
henp-héwas i Offen denoted the “hidden/hiding” heritability.
h2-hzyp is denoted the (sfill) missing heritability.



Estimating genetic covariance: G-matrix
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Software to estimate genetic variance
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Estimating genetic covariance: G-matrix

~ Traitl  Trait2 Trait 3 _
Trait 1 1 -0.625 0.294
Trait 2 -0.625 1 0.563
Trait 3 0.294 0.563 1 Trait 3

lEigenanaIysis

Eigenvalues Eigenvectors

gmx 1708 -0.509 0.764 0.396
92 1292 0.656 0.048 0.753

Ornin (@\ 0.556 -0.643 0.525

No genetic variance
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o

Genetic variation tends to be concentrated in
certain trait combinations

Additive genetic variation (V,)
Dominance genetic variation (Vy) < almost every trait we go out and
Environmental variation (V, of Vi) measure has additive genetic
variation

o
w

Proportion of variance (%)
o
R

o
a

0.0

g,.. e, e, e, e e, e,

the genetic variation in a set of traits
is often restricted to a few
multivariate combinations of those
traits

Sztepanacz and Blows (2015) Genetics 200: 371-384
Sztepanacz et al (2017) Genetics 206: 2185-2198



Genetic variance in unevenly distributed

across G
[ati 11 morphology

variation 1. m sexually selected

* many traits have little genetic variation . D! d] -
PIT
i ' 190 fen e s

e suggests there are few independent froeris e R L ﬁ% .

genetic dimensions underlying - .

organisms

The typical distribution of eigenvalues from
genetic covariance matrices.
From McGuigan and Blows 2015 Mol Ecol



Genetic variance in unevenly distributed
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Pavlyshyn, D., Johnstone, |.M. and Sztepanacz, J.L., 2022. Comparison of REML
methods for the study of phenome-wide genetic variation. arXiv preprint
arXiv:2210.11709.

Blows, M.W., Allen, S.L., Collet, J.M., Chenoweth, S.F. and McGuigan, K., 2015. The phenome-wide
distribution of genetic variance. The American Naturalist, 186(1), pp.15-30.



Questions?



Topics we will cover:

3. Genetic constraints



Uneven distribution of genetic variance can
lead to evolutionary constraints

° nearly-nUII Subspace Of genetic :............................I:.|..I..if.e.h..is.tc.)r..yté.a.i..ts....
variation (Mezey and Houle 2005) 1., morphology
] m sexually selected

e qualitative vs. quantitative constraints

e quantitative constraints can become
qualitative because of demography

(Gomulkiewicz and Houle 2009) The typical distribution of eigenvalues from

genetic covariance matrices.
From McGuigan and Blows 2015 Mol Ecol



Uneven distribution of genetic variance can
lead to evolutionary constraints

* Optimum

Pd
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Schluter 1996



Uneven distribution of genetic variance can
lead to evolutionary constraints

* Optimum

Zq

Schluter 1996



How can we quantify genetic constraints

* maximum evolvability

* total genetic variance

e average evolvability

* effective number of dimensions
* eigenvalue variance

* eigenvalue evenness

* number of O eigenvalues
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Fig. 1 Patterns of multivariate vanation with m =3 trats as a
function of the effective number of dimensions (np) and the total
genetic varanon (vy)



The curse of dimensionality

* to estimate the genetic covariance between two traits we need to estimate three
parameters at the genetic level

* we need lots more data to estimate genetic covariances than genetic variances
» estimates of genetic covariances often have high standard errors

* Systematic bias in estimation of eigenvalues



Systematic biases in the estimation of
eigenvalues

 with MANOVA or REML leading
eigenvalues are overestimated

and trailing eigenvalues are
underestimated

* the uneven distribution of genetic
variance we saw earlier (that we
Interpret to arise as a
consequence of pleiotropy) is the
same pattern as statistical bias

Count
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REML estimate

6

8 0
Eigenvalue




Differences between eigenvalues and
estimated eigenvalues

* we now know that the overdispersion of estimated eigenvalues from
MANOVA and REML is qualitatively similar to the bias observed for
sample covariance matrices



Eigenvalues of sample covariance matrices follow
the Tracy Widom distributior

Tracy Widom Distribution
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Differences between eigenvalues and
estimated eigenvalues

* we now know that the overdispersion of estimated eigenvalues from
MANOVA and REML is qualitatively similar to the bias observed for
sample covariance matrices

» for sample covariance matrices there are analytical solutions to this
bias

* for G matrices there are not (at least not yet)



Eigenvalues of G matrices also follow Tracy
Widom

© -
Leading eigenvalue of a G matrix from random-~ <r~TraiIing eigenvalue of a G matrix from random
<« data P data ‘
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Tracy Widom statistic Tracy Widom statistic

* we can use the Tracy Widom distribution as a null for the leading eigenvalues of G

Sztepanacz, J.L. and Blows, M. W. (2017). Acco ory. Genetics. 206:1271-1284



https://www.genetics.org/content/genetics/206/3/1271.full.pdf

W works as a null distribution

* simulate a G matrix with one phenotypic dimension that has genetic variance
 compare estimated eigenvalues to the null Tracy Widom distribution
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We are now expanding that work...

* that was for a specific design with few traits

e we are now expanding to more complex data structure and many
traits- phenomes

We gratefully acknowledge support from

QEE' Cornell UanElblty the Simons Foundation and member institutions.
Statistics > Applications
PP Download:
[Submitted on 21 Oct 2022] e PDF
Comparison of REML methods for the study of phenome-wide genetic variation . ?ther formats
Damian Pavlyshyn, lain M. Johnstone, Jacqueline L. Sztepanacz Current browse context:
stat.AP
It is now well documented that genetic covariance between functionally related traits leads to an uneven distribution of genetic variation <prev | next>
across multivariate trait combinations, and possibly a large part of phenotype-space that is inaccessible to evolution. How the size of this new | recent | 2210

nearly-null genetic space translates to the broader phenome level is unknown. High dimensional phenotype data to address these questions Change to browse by:

,



These patterns are all correlative

 studying correlative patterns is useful to detecting and inferring
regions of phenotype space that might experience evolutionary
constraints

* it’s the only feasible way to study evolutionary constraints on a large-
scale

* but, we also need manipulative evidence



Empirical test of nearly null
subspace

Table 1: Cuticular hydrocarbon (CHC) selection gradients and estimated genetic variance (V,) in and

heritabilities (#*) of CHC and selection index traits g
Selection gradients % ;g
Base V, Base ¥ A B C D E F G H - 4 ;
Base V, 725 .483 295 134 176 054 172 .059 g 2
Base I 115 .399 273 251 208 273 128 .199 3 18
Realized I 206 427 326 237 197 121 155 197 5 =
Z2,7-59-C,.,  .069 A11 146 028  —.132 063 —.159 —.301 342 —.851 « -3
Z-9-C,., 191 128 078  —.063 .003 190 —.148 276 873 306 &
7-9-C,,, 164 160 131 —.285 387 —.800 —.293 128 074  —.067 !
2-Me-C,, 482 255 380 791 108 —.222  —.020 —.333 097 219 ﬂ
72,7-59-C,,,  .195 175 417 —.161 437 493 —.541 —.088 —.246 068
2-Me-C,, 258 178 467 216 —.240  —.002 029 769 —.183 —.227
7,7-59-C,,,  .349 147 358 —.197 480 .096 756  —.044 107 —.095 IR
2-Me-C,, 391 213 538 —.420 —.585 —.137 041 —.325 —.027 .256 »

2 3 4 4 2 0 3 4
Cumulative Selection Differential Cumulative Selection Differential

'

Hine, E., McGuigan, K. and Blows, M.W., 2014. Evolutionary constraints in high-dimensional trait sets. The American Naturalist, 184(1), pp.119-131.



Do genetic constraints predict evolutionary
response?

log, ,(M variance)
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Do genetic constraints predict evolutionary
response?

1]

a Genetic variation In wing shape
[l D. melanogaster
M 5. punctum
5. fulgens

Comparison of covarlanca structure

b Developmental, mutational and evolutionary wing shape varlation
W Macrosvolutionary variance (R in Diptera)
M Developmental variance (D in S punctum)

B Mutationsl varisnce (M in D. melanogaster) — M‘-.

Lo, f racroewvo lutionary variance )

0.6 1.0 0 [+ R 10 15 20 -20 -1.6 -12 -048
logypidevelopmeantal variance) log (gensatic variance) log{mutational varianca)

-----



Do genetic constraints predict evolutionary
response?

Contemporary data Fossil data
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Questions?



Genetic correlations also occur between the
sexes

* many traits are expressed in both males and females

e often, we might expect that breeding values for a trait in males and
females are not exactly equal

 this means the cross-sex genetic correlation will be less than unity (maybe
even negative)

 particularly for traits that experience intralocus sexual conflict



Genetic correlations also occur between the
sexes

* the cross-sex genetic correlation is represented as r,

* cross sex genetic correlations determine the correlated response to
selection on one sex in the other sex



Between-sex G

Genetic covariance
between traits in

males _\ -
G B
G, =

B G,

_ N —
/ Genetic covariance
Cross-sex covariance between traits in
females

Lande (1980) Evolution, 34: 292-305



eigenvalue (amount of genetic variance)

More sexually concordant genetic variation
in Drosophila wings
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Sztepanacz and Houle (2019) Evolution 73: 1617-1633
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In most species males have longer
wings than females

Shape dimorphism
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Sztepanacz and Houle (2021) Evolution 75: 1117-1131



Literature Survey of G,

Taxon Traits Statistical approach Environment
Invertebrates 10 Morphology 8 Frequentist 13 Laboratory 14
Plants 1 Behaviour 2 Bayesian 4 Field 3
Vertebrates 6 Life-history 3

Physiology 3
Transcriptomics 1

* 23 estimates of G, from 17 studies

Videlier and Sztepanacz 2025 AmNat



Most genetic variance is sexually concordant
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 On average 77% of the genetic variation is sexually concordant

Videlier and Sztepanacz 2025 AmNat



Genetic correlations also occur between life-
stages (and sexes, and all combinations!)

3 relative fitness
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Questions?
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