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Genetic covariances are important for 
evolution

• selection on one trait will lead to a correlated response 
in the other

• can accelerate evolution

• can slow evolution

• can prevent evolution?



Let’s us answer important and interesting 
questions…

• can this population adapt to ecological change, or will it go extinct?

• is the evolutionary response in my favourite trait constrained?

• do diseases commonly co-occur? which ones?

• what is the degree of integration of a phenotype (or how many independent 
genetic dimensions underly an organism)

• will my award-winning racehorse have good sons and good daughters?



Topics we will cover:

• Multivariate quantitative genetics

1. Pleiotropy & Genetic correlations

2. The G matrix

3. Genetic constraints

• Selection

1. Empirical methods to estimate selection

2. Empirical results



• genetic variation is unevenly distributed across multivariate trait 
combinations because of pleiotropy

• the uneven distribution of genetic variance can lead to evolutionary 
constraints

• we can estimate selection on multiple traits using linear or quadratic 
regression approaches

Key Take Aways:



Some historical context…

• Quantitative genetics wasn’t a major focus in evolutionary research 
until the 1970’s/1980’s

• Evolutionary quantitative genetics happened in 2 steps

1. Lande’s papers in the late 70’s 

2. Operational framework to estimate selection in natural populations 
(eg. Lande and Arnold 1983)



Breeder’s vs Lande equation

Breeder’s equation

Lande equation



Topics we will cover:

• Multivariate quantitative genetics

1. Pleiotropy & Genetic correlations

2. The G matrix

3. Genetic constraints

• Selection

1. Empirical methods to estimate selection

2. Empirical results



Breeders believe that long limbs are almost always accompanied by an elongated head. Some instances of 
correlation are quite whimsical; thus cats with blue eyes are invariably deaf; … Hairless dogs have imperfect teeth; 
long-haired and coarse-haired animals are apt to have, as is asserted, long or many horns; pigeons with feathered 
feet have skin between their outer toes; pigeons with short beaks have small feet, and those with long beaks large 
feet. Hence, if man goes on selecting, and thus augmenting, any peculiarity, he will almost certainly unconsciously 
modify other parts of the structure, owing to the mysterious laws of the correlation of growth.

— Charles Darwin, The Origin of Species, 1859

Phenotypic correlation between 
traits

https://en.wikipedia.org/wiki/Charles_Darwin
https://en.wikipedia.org/wiki/The_Origin_of_Species


Phenotypic correlation between traits

• phenotypic correlations can be caused by environmental factors

• variation in resource availability can lead to a positive correlation 
between the size of all appendages

• environmental cue to initiate the allocation of resources to 
reproduction causes a curtailment in growth

• Can also cause correlations between traits and fitness



Trait 1 

Trait 2

The environmental correlation 
between traits



Trait 1 

Trait 2

The genetic and environmental 
correlation between traits



Unintended effects from breeding-
double muscling

• some beef cattle show extraordinary muscle

• caused by mutations in myostatin genes

• has been selected for in Belgian blue cattle- they 
produce 20% more lean edible meat than other cattle

• leads to problems with stress tolerance, fertility, and 
calf viability



Unintended effects from breeding-
Super-chickens

• artificial selection for egg laying- individual level 
selection

• over time they produced fewer eggs- pleiotropic side 
effect of aggression

• they pecked each other to death



QTL / GWAS- promised to find many major 
effect loci

• most traits have a polygenic genetic architecture

• if there are many more phenotypes than genotypes (and there are- 
the genome is finite and the phenome is not) AND most traits are 
affected by many genes, then most genes must affect many traits



Omnigenic model

• human gene regulatory networks are so interconnected that 
thousands of individual genes contribute at least slightly to 
the phenotype (infinitesimal model)

• variation in one part of the genome can have indirect effects on any 
other trait (universal pleiotropy)

• “peripheral” genes far outnumber core genes and contribute much 
more to a trait’s heritability



LD causes genetic correlations

• linkage disequilibrium is a measure of whether an allele at one locus 
is found more often with an allele at another locus

• can be caused by physical linkage

Wagner, G., Zhang, J. The pleiotropic structure of the genotype–phenotype map: the evolvability of complex organisms. Nat Rev Genet 12, 204–213 (2011). 
https://doi.org/10.1038/nrg2949



• over time LD caused by physical linkage will decay due to 
recombination

LD causes genetic correlations



6 Recombination and linkage disequilibrium in evolutionary signatures in A Primer of Molecular Population Genetics, 
https://doi.org/10.1093/oso/9780198838944.003.0006

The content of this slide may be subject to copyright: please see the slide notes for details.

Decay of LD with time

https://doi.org/10.1093/oso/9780198838944.003.0006


• can be caused by ‘statistical linkage’

• selection can maintain LD (eg. non-random mating; covariance 
between traits and preference; others?)

• One generation of random mating will 

restore linkage equilibrium
Chromosome 1 

Chromosome 2 

LD causes genetic correlations



Pleiotropy causes genetic correlations

• pleiotropy occurs when a gene/allele affects more than one trait

Wagner, G., Zhang, J. The pleiotropic structure of the genotype–phenotype map: the evolvability of complex organisms. Nat Rev Genet 12, 204–213 (2011). https://doi.org/10.1038/nrg2949



• defining pleiotropy (at least intuitively) is easy- measuring it is not!

• how to distinguish between a pleiotropic mutation and two closely linked 
mutations?

Pleiotropy causes genetic correlations



The additive genetic covariance/correlation 
between traits

• let’s assume that most genetic correlation is caused by 
pleiotropy….seems like a reasonable assumption



Is pleiotropy a property of a mutation or a gene? Which of these are 
pleiotropy?



Is pleiotropy a property of a mutation or a gene? Which of these are 
pleiotropy?

Anreiter I, Sokolowski MB. 2019. The foraging gene and its behavioral effects: pleiotropy and plasticity. Annual Review of Genetics 53:373-392. DOI

https://doi.org/10.1146/annurev-genet-112618-043536


The degree of pleiotropy depends on the 
definition of a trait

what if we define the trait as the um of tail length 
and femur length (‘FeTail’)?

Wagner, G., Zhang, J. The pleiotropic structure of the genotype–phenotype map: the evolvability of complex organisms. Nat Rev Genet 12, 204–213 (2011). https://doi.org/10.1038/nrg2949

Pleiotropic effect on two traits



The degree of pleiotropy depends on the 
definition of a trait

morphometrics

gene expression



Identifying/Quantifying pleiotropy

• through gene knockdown studies

• through GWAS

• by studying patterns of genetic variation in multiple dimensions



Gene-knockdown studies

mouse 
skeletal

sticklebacks

mouse 
morphology 
and physiology

embryo 
development



GWAS studies

• find the SNPs that are significantly associated with each of your 
favourite traits

• count the SNPs that are significantly associated with each pair

• power issues for most studies



GWAS studies
Phenotype

Neurological phenotypes

Alzheimer disease

Migraine

Schizophrenia

Anthropometric and social traits

Beighton hypermobility

Breast size

Body mass index

Educational attainment

Height

Male-pattern baldness

Nearsightedness

Nose size

Waist–hip ratio

Unibrow

Immune-related traits

Any allergies

Asthma

Childhood ear infections

Crohn's disease

Hypothyroidism

Rheumatoid arthritis

Metabolic phenotypes

Age at menarche

Age at menarche (23andMe)

Triglycerides

Total cholesterol

Hematopoietic traits

Hemoglobin

Mean cell hemoglobin concentration

Platelet count

Mean platelet volume

Heatmap shows the 
proportion of SNPs 
that are significantly 
associated with both 
traits

Pickrell, J., Berisa, T., Liu, J. et al. Detection and interpretation of shared genetic influences on 42 human traits. Nat Genet 48, 709–717 (2016). https://doi.org/10.1038/ng.3570



GWAS studies
Univariate – PC1

Multivariate – 59 dimensions
Only one SNP in common 
in two analyses

Pitchers, W., Nye, J., Márquez, E.J., Kowalski, A., Dworkin, I. and Houle, D., 2019. A multivariate genome-wide association study of wing shape in Drosophila melanogaster. Genetics, 211(4), pp.1429-1447.



Questions?



Topics we will cover:

• Multivariate quantitative genetics

1. Pleiotropy & Genetic correlations

2. The G matrix

3. Genetic constraints

• Selection

1. Empirical methods to estimate selection

2. Empirical results



How to estimate genetic variance using 
relatedness information

• There are a number of factors that can lead to similarity among relatives eg. Common environment, 
maternal effects, GENETICS

• If phenotypic variation has a genetic basis, then relatives will appear more similar than non-relatives, and 
the closer the relative the more similar they will appear

• We can use information about the covariance between relatives to partition phenotypic variation into 
genetic and non-genetic components (and different types of genetic components



How to estimate genetic variance using 
relatedness information

• Relatives are more likely to share alleles than non-relatives

• You share 50% of your genes with your mother or father

• Siblings share 50% of their genes

• What you really mean is that you share alleles with your relatives that are IDENTICAL BY DESCENT (IBD)

• IBD means the same alleles can be traced to a common ancestor



How to estimate genetic variance using relatedness information

• IBD means that a gene is a direct descendent of a specific gene carried by some ancestral individual. 

• different than identical/alike by state (IBS/AIS) which means the allele is the same but they have descended 
from different copies in the reference population



How to estimate genetic variance using relatedness information



Coefficients of Coancestry and Relatedness
• We need to figure out these weights for any type of relatives

• Path counting– identifies the path linking individuals, lets you calculate the probability that their alleles are 
IBD (coefficient of coancestry)

• Coefficient of relatedness is 2X the coefficient of coancestry because it takes into account that either pair of 
alleles can be shared



Coefficients of Coancestry and Relatedness

• We need to figure out these weights for any type of relatives



How to estimate genetic variance

Alastair J. Wilson, et al (2010) An ecologist’s guide to the animal model. Journal of 
Animal Ecology, 79, 13–26.



How to estimate genetic variance

Additive genetic variance: VA
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Heritability

• Most traits have heritability between 
20-60%

• Heritability is higher for 
morphological traits than for life-
history or fitness related traits

Hoffmann, A.A., Merilä, J. and Kristensen, T.N., 2016. Heritability and evolvability of fitness and nonfitness traits: lessons from 

livestock. Evolution, 70(8), pp.1770-1779



How to estimate genetic variance
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Alastair J. Wilson, et al (2010) An ecologist’s guide to the animal model. Journal of 
Animal Ecology, 79, 13–26.



How to estimate genetic variance using genomic information

• Genomic information (sequencing data) can 
also be used to estimate relatedness

• Treat identity by state (IBS, AIS) as identity by 
descent (IBD)

Locus Individual 1 Individual 2

1 00 10

2 10 00

3 01 01

4 11 11

5 11 01

6 01 10

7 10 10



Genomic Relatedness Matrices

W is a marker matrix
n is the number of individuals



How to estimate genetic variance

Additive genetic variance: VA
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How to estimate genetic variance using relatedness information

• Coefficients of relatedness can be greater than 1 with 
inbreeding, non-random mating etc

• Also remember these are expected values!

• Genomic relatedness can differ quite dramatically from 
the expected values

Histogram of the genome-wide additive genetic 

relationships of full-sib pairs estimated from genetic 

markers.

Visscher PM, Medland SE, Ferreira MAR, Morley KI, Zhu G, Cornes BK, et al. (2006) Assumption-Free Estimation of Heritability from Genome-Wide Identity-by-

Descent Sharing between Full Siblings. PLoS Genet 2(3): e41.



Difference between pedigree and GRM

• Pedigree is based on IBD

• GRM is based on IBS

• Pedigree contains expected values of relatedness

• GRM contains actual values of relatedness which can differ from 
expected values due to segregation



Difference between pedigree and GRM



• Pedigree relationship matrix estimates genetic variance for the group 
of unrelated founders in the pedigree (ie. base population)

• GRM estimates genetic variance among the set of genotyped 
individuals

Difference between pedigree and GRM



• Power for estimating genetic variance comes in part from the 
variance in relatedness among individuals

• Low relatedness can lead to biased estimates of additive variance

Difference between pedigree and GRM



Fraimout, A., Guillaume, F., Li, Z., Sillanpää, M.J., Rastas, P. and Merilä, J., 2024. Dissecting the genetic architecture of quantitative traits using 
genome‐wide identity‐by‐descent sharing. Molecular Ecology, 33(6), p.e17299

Difference between pedigree and GRM



• Power for estimating genetic variance comes in part from the 
variance in relatedness among individuals

• Low relatedness can lead to biased estimates of additive variance

• Which SNPs are included in GRM can also lead to biased estimates of 
variance

Difference between pedigree and GRM



2008: ~12 SNPs explain ~2% variance1

2008: ~30 SNPs explain ~4% variance2

2010: ~180 SNPs explain ~10% variance3

2011: ~200 SNPs explain ~10% variance4

2014: ~700 SNPs explain ~20% variance5

….
….

….

2022: ~12,111 SNPs explain ~50% variance

Variants affecting human height:

1 Lettre, G. et al. (2008) Nat. Genet. 40, 584–591; 2 Gudbjartsson et al . (2008) Nat. Genet. 40, 609-615; 3Allen et al (2010) Nature 467, 832–838;
4 Zhang G, et al. (2011) PLoS ONE 6(12): e29475; 5 Wood, A. et al. (2014) Nat. Genet. 46, 1173-1186;  

Missing heritability



Missing heritability for height has been found

• data from ~5.4 million people

• identified 12,111 genetic variants affecting height that cover ~21% of 
the genome

• together explain 50% of the phenotypic variation in height



Missing heritability



Estimating genetic covariance: G-matrix
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Use a linear model to partition 
phenotypic variation

Genetic variance in each trait

Genetic covariance between the traits



Software to estimate genetic variance

• GCTA

• GREML

• + others
Alastair J. Wilson, et al (2010) An ecologist’s guide to the animal model. Journal of Animal 
Ecology, 79, 13–26.



Estimating genetic covariance: G-matrix
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• the genetic variation in a set of traits 

is often restricted to a few 

multivariate combinations of those 

traits

Genetic variation tends to be concentrated in 
certain trait combinations

Sztepanacz et al (2017) Genetics 206: 2185-2198

Additive genetic variation (VA)
Dominance genetic variation (VD)

Environmental variation (VA of VE)

Sztepanacz and Blows (2015) Genetics 200: 371-384

• almost every trait we go out and 

measure has additive genetic 

variation



Genetic variance in unevenly distributed 
across G

• a few traits have most genetic 
variation

• many traits have little genetic variation

• suggests there are few independent 
genetic dimensions underlying 
organisms



Genetic variance in unevenly distributed 
across G Line Replicate
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Blows, M.W., Allen, S.L., Collet, J.M., Chenoweth, S.F. and McGuigan, K., 2015. The phenome-wide 

distribution of genetic variance. The American Naturalist, 186(1), pp.15-30.

Pavlyshyn, D., Johnstone, I.M. and Sztepanacz, J.L., 2022. Comparison of REML 

methods for the study of phenome-wide genetic variation. arXiv preprint 

arXiv:2210.11709.



Questions?



Topics we will cover:

• Multivariate quantitative genetics

1. Pleiotropy & Genetic correlations

2. The G matrix

3. Genetic constraints

• Selection

1. Empirical methods to estimate selection

2. Empirical results



Uneven distribution of genetic variance can 
lead to evolutionary constraints

• nearly-null subspace of genetic 
variation (Mezey and Houle 2005)

• qualitative vs. quantitative constraints

• quantitative constraints can become 
qualitative because of demography 
(Gomulkiewicz and Houle 2009)



Schluter 1996

* Optimum

z1

β

z2

Uneven distribution of genetic variance can 
lead to evolutionary constraints



Schluter 1996

* Optimum

z1

β

z2

Uneven distribution of genetic variance can 
lead to evolutionary constraints



How can we quantify genetic constraints

• maximum evolvability

• total genetic variance

• average evolvability

• effective number of dimensions

• eigenvalue variance

• eigenvalue evenness

• number of 0 eigenvalues



The curse of dimensionality

• to estimate the genetic covariance between two traits we need to estimate three 
parameters at the genetic level

• we need lots more data to estimate genetic covariances than genetic variances

• estimates of genetic covariances often have high standard errors

• Systematic bias in estimation of eigenvalues



Systematic biases in the estimation of 
eigenvalues

• with MANOVA or REML leading 
eigenvalues are overestimated 
and trailing eigenvalues are 
underestimated

• the uneven distribution of genetic 
variance we saw earlier (that we 
interpret to arise as a 
consequence of pleiotropy) is the 
same pattern as statistical bias

True SA REML estimate
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Differences between eigenvalues and 
estimated eigenvalues

• we now know that the overdispersion of estimated eigenvalues from 
MANOVA and REML is qualitatively similar to the bias observed for 
sample covariance matrices



Eigenvalues of sample covariance matrices follow 
the Tracy Widom distribution
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Differences between eigenvalues and 
estimated eigenvalues

• we now know that the overdispersion of estimated eigenvalues from 
MANOVA and REML is qualitatively similar to the bias observed for 
sample covariance matrices

• for sample covariance matrices there are analytical solutions to this 
bias

• for G matrices there are not (at least not yet)



• we can use the Tracy Widom distribution as a null for the leading eigenvalues of G

Eigenvalues of G matrices also follow Tracy 
Widom
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gmax

Leading eigenvalue of a G matrix from random 
data

Tracy Widom statistic

gmin

Trailing eigenvalue of a G matrix from random 
data

Sztepanacz, J.L. and Blows, M. W. (2017). Accounting for sampling error in genetic eigenvalues using random matrix theory. Genetics. 206: 1271-1284

https://www.genetics.org/content/genetics/206/3/1271.full.pdf


TW works as a null distribution

• simulate a G matrix with one phenotypic dimension that has genetic variance

gmax g2

• compare estimated eigenvalues to the null Tracy Widom distribution



We are now expanding that work…

• that was for a specific design with few traits

• we are now expanding to more complex data structure and many 
traits- phenomes



These patterns are all correlative

• studying correlative patterns is useful to detecting and inferring 
regions of phenotype space that might experience evolutionary 
constraints

• it’s the only feasible way to study evolutionary constraints on a large-
scale

• but, we also need manipulative evidence



Empirical test of nearly null 
subspace

Hine, E., McGuigan, K. and Blows, M.W., 2014. Evolutionary constraints in high-dimensional trait sets. The American Naturalist, 184(1), pp.119-131.



Do genetic constraints predict evolutionary 
response?



Do genetic constraints predict evolutionary 
response?



Do genetic constraints predict evolutionary 
response?



Questions?



Genetic correlations also occur between the 
sexes

• many traits are expressed in both males and females

• often, we might expect that breeding values for a trait in males and 
females are not exactly equal

• this means the cross-sex genetic correlation will be less than unity (maybe 
even negative)

• particularly for traits that experience intralocus sexual conflict



Genetic correlations also occur between the 
sexes

• the cross-sex genetic correlation is represented as rmf

• cross sex genetic correlations determine the correlated response to 
selection on one sex in the other sex
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Lande (1980) Evolution, 34: 292-305

Genetic covariance 
between traits in 
males

Genetic covariance 
between traits in 
females

Cross-sex covariance

Gmf  = 

Between-sex G



More sexually concordant genetic variation 
in Drosophila wings

Sztepanacz and Houle (2019) Evolution 73: 1617-1633

• there is 25X more genetic variation that 

would allow a response to sexually 

concordant selection



Shape dimorphism

In most species males have longer thinner 
wings than females

Sztepanacz and Houle (2021) Evolution 75: 1117-1131



Literature Survey of 𝐆𝑚𝑓

• 23 estimates of 𝐆𝑚𝑓 from 17 studies

Videlier and Sztepanacz 2025 AmNat



• On average 77% of the genetic variation is sexually concordant

Most genetic variance is sexually concordant

Videlier and Sztepanacz 2025 AmNat

Sexually concordant 
variation

Sexually antagonistic 
variation



Genetic correlations also occur between life-
stages (and sexes, and all combinations!)



Questions?
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