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Topics we will cover:

e Selection



Selection

e genetic constraints and evolutionary lines of least resistance are only

relevant in the context of selection

* how can we estimate selection?

Value for trait 2

The effect of the G-matrix on the response to selection

Showing the frajectory in the absence of genetics comelation

p

K

\alue for trait 1

https://phenotypicevolution.com/?page_id=113



Breeder’s equation, selection differential



Lande-Arnold Regression

* Lande and Arnold (1983) proposed a method to estimate selection on
phenotypes using regression

e operationally we can obtain selection gradients by estimating the
partial regression coefficients of trait values on relative fitness
(multiple regression)

e easy to implement, and can be used to disentangle selection acting
directly and indirectly on a trait



Lande-Arnold Regression
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Partitioning selection among traits

Selection Gradient Analysis: Total selection on atrait z is the sum of its direct effect
on fitness plus the indirect effects of correlated traits

S, = cov(z,w) = B, + 13,0,

Sy = cov(y,w) =150, + By



Partitioning selection among traits

direct

S, = cov(z,w) = B, + 13,0,

Sy = cov(y,w) = 15,6, + Py

direct



Partitioning selection among traits

indirect
direct ~ through Y

S, =cov(z,w) =, + szﬁy

Sy = cov(y,w) = 15,0, + By

indirect direct
through 2



Directional selection is strong

Multivariate LED
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* median variance standardized directional selection gradient of 0.153 for natural selection 0.250 for
sexual selection

 Median mean standardized multivariate directional selection gradient was 0.54 (mean 0.28)

Hoekstra, H.E., Hoekstra, J.M., Berrigan, D., Vignieri, S.N., Hoang, A., Hill, C.E., Beerli, P. and Kingsolver, J.G., 2001. Strength and tempo of directional selection in the wild. PNAS, 98(16), pp.9157-9160.
Hereford, J., Hansen, T.F. and Houle, D., 2004. Comparing strengths of directional selection: how strong is strong?. Evolution, 58(10), pp.2133-2143



Problems with correlated traits

* performing multiple regression on correlated traits can be a challenge
because it is hard to estimate their independent effects on fitness

* this can lead to large standard errors of estimates and inaccurate
estimates of selection

e over the years solutions like dropping traits, estimating selection on
PCs, etc have been proposed



Trait 2

Trait 1

Problems with correlated traits

 when traits are correlated it can be

r=0.7 hard to estimate their independent
~ effects on fitness
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e  leads to large standard errors and

inaccurate estimates of selection

Trait 1 * dropping correlated traits from analysis
is a common solution
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Regularized regression

Linear regression with a penalty added

Coefficients are constrained to be within a certain space
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Regularized regression for estimating selection

* simulation study to compare the accuracy of Lande-Arnold regression to regularized regression
for estimates selection

* re-analysed published studies of selection using regularized regression

Sample Variance Traits under
Traits _ P Inflation ] Fitness distribution
Size salection
Factor

4 100 low all binomial

7 400 mid/high up to half poisson

12 1000

17

Sztepanacz and Houle (2024) Evolution Letters 8: 361-373



More accurate estimates of the total strength of selection

Poisson fitness (seed set) Binomial fitness (mating success)
10.01 10.0
8.0 8.0
7.0 multiple regression 708
6.0: e lasco 6.0:
H ’BH 4.01 =e= elastic net 4 4.0

1 6 11 16 21 26 36 46 56

1 6 11 16 2126 36 4656
Variance inflation factor Variance inflation factor

Sztepanacz and Houle (2024) Evolution Letters 8: 361-373



Does not improve estimates of the direction of selection

4 traits low multicollinearity (VIF ~1) 17 traits high multicollinearity (VIF ~56)

@ multiple regression
® lasso

@ ridge

@ elastic net

/ 9:120 92750

Sztepanacz and Houle (2024) Evolution Letters 8: 361-373



Arabidopsis phenology

Estimated selection on Arabidopsis phenology from Chong et al., (2018)

PC regression

Method OLS regression (4 PCs) Lasso Ridge
Coefficients (+/- SE)
Flowering time -0.299 (0.191) -0.181 -0.371 -0.143
Flowering duration 0.050 (0.182) 0.186 — 0.109
Branch number 0.080 (0.085) 0.034 — 0.083
Rosette diameter 0.059 (0.068) 0.072 — 0.072
Rosette leaf number 0.061 (0.097) 0.033 — -0.006
R’ - 0.55 [0.007, 0.939] - 0.680 [0.081, 0.997] 0.964 [0.838, 0.997]

Sztepanacz and Houle (2024) Evolution Letters 8: 361-373



Stabilizing selection

e even though we often focus on directional selection, stabilizing
selection is the most common form of selection operating in
populations

* stabilizing selection reduces the variance in the population

e disruptive selection increases the variance (eg. selection for extremes,
negative frequency dependent selection)



Quadratic regression to estimate correlational
and quadratic selection
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Quadratic regression to estimate correlational
and guadratic selection
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« disruptive selection appears to be as common as stabilizing selection



Quadratic regression to estimate correlational
and quadratic selection

Table 9.1 The vector of standardized linear gradients (8) and the matrix of standardized quadratic and correlational selection gradients (y) for male

call structure components in T. commuodus. Note that the quadratic gradients were not doubled in the original study but have been done so here. The
significance of selection gradients were tested using permutation test with 9999 iterations (see text): *P <005, **P <0.01, =P <0.001

r 4
B CPN CIPD ™ ICD DF
CPN 0.007 0.012
CIPD -0.003 0.017 0,012
N 0.015 0.019 0.039 —0.080
ICD —0.214% % % —0.022 0036 0.086+ 01604+
DF 0.059 0.024 —0.031 0.041 -0.013 —0.094%

Brooks R, Hunt J, Blows MW, Smith MJ, Bussiére LF, Jennions MD. Experimental evidence for multivariate stabilizing sexual selection. Evolution. 2005 Apr;59(4):871-80. PMID: 15926696.



Canonical rotation of correlational and
guadratic selection

Table 9.2 The M matrix of eigenvectors derived from the canonical analysis of 4. The linear (#;) and quadratic () gradients of selection acting along
these eigenvectors are provided in the last two columns. We tested the significance of selection along these eigenvectors using a permutation test

DT

based on the double regression method of (Bisgaard and Ankenman 1996) but note that the results were qualitatively the same when the permutation § . ~ a
test of Reynolds et al. (2010) was used. Randomization test: *P <0.05, *P <0.01, *P <0.001 = ’g’. ‘g..
2
e
M Selection £ ..‘ ‘.gg 2
CPN CIPD TN ICD DF B; A #’.‘ : Jr=
my 0.800 0.497 0.305 —0.057 0.130 0.028 0.035 ; .gesg 2
m;z —0.446 0.806 —0.001 —0.091 —0.377 —0.017 —0.003 o e OO ~ :5
m3 —0.302 0.003 0.776 0.500 0.240 —0.082 —0.019 2 : H\,—\/\ 2
my —0.257 0.208 —0.102 —0.405 0.846 0.1442+= —0.108+ g o =1 -2 -3
ms 0.068 0.244 —0.543 0.758 0.258 —0.160%= —0.240**

Figure 9.3 Thin-plate spline perspective view visualization of the
fitness surface on the two major axes of non-linear selection, my and
ms. The thin-plate spline was estimated using the Tps function in R
(version 9.2.1), using the value of the smoothing parameter, A, that
minimized the GCV score. Redrawn from Brooks et al. (2005), with
permission from John Wiley and Sons.

Brooks R, Hunt J, Blows MW, Smith MJ, Bussiére LF, Jennions MD. Experimental evidence for multivariate stabilizing sexual selection. Evolution. 2005 Apr;59(4):871-80. PMID: 15926696.



Multivariate saddles may be common
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Brodie lll, E.D., 1992. Correlational selection for color pattern and antipredator behavior in the garter snake Thamnophis ordinoides. Evolution, 46(5), pp.1284-1298.



Pleiotropic model of MSB

 alleles affect a focal trait and their pleiotropic effects on other traits are condensed
iInto an effect on net fitness

« mutations may increase or decrease the value of a focal trait, but their effects on
fitness are almost certainly deleterious

 individuals with more extreme values of a focal trait will tend to carry alleles that have
deleterious effects with respect to net fitness
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Artificial selection experiments

* Evolutionary limits are also indicative of pleiotropic effects on fitness
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Apparent stabilising selection

One example 0.20-
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https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1558-5646.2012.01658.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1558-5646.2012.01658.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1558-5646.2012.01658.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1558-5646.2012.01658.x
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max fails. The American Naturalist. 190(5)

Sztepanacz, J.L. and Mark. W. Blows. (2017).


https://www.journals.uchicago.edu/doi/abs/10.1086/693959
https://www.journals.uchicago.edu/doi/abs/10.1086/693959
https://www.journals.uchicago.edu/doi/abs/10.1086/693959
https://www.journals.uchicago.edu/doi/abs/10.1086/693959

Apparent stabilising selection

Phenotypic variance (control line s.d.)
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Correlated responses to selection were larger than responses on

targeted traits

AVp_ 1.044*
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Correlated selection against extreme phenotypes
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* significant quadratic (stabilizing) selection via male reproductive failure in both g,,,, and m,,,,
populations

* the multivariate trait combination under significant stabilizing selection via male reproductive
failure was not g,,,, Or M, 4



Key take-aways:

e genetic variation is unevenly distributed across multivariate trait combinations
because of pleiotropy

* the uneven distribution of genetic variance can lead to evolutionary constraints

* we can estimate selection on multiple traits using linear or quadratic regression
approaches

* Most stabilizing selection may arise through the pleiotropic effects of alleles on
multiple traits



Questions?
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