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IS MACROEVOLUTION JUST
MICROEVOLUTION+TIME?
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Infinitesimal model of

trait variation

2 Loci Effects

Trait Distribution with 2 Loci

5 Loci Effects

Trait Distribution with 5 Loci

? ———

i

?-:l_l

50 Loci Effects

Trait Distribution with 50 Loci

500 Loci Effects

Trait Distribution with 500 Loci

Magnitude of effect
for each locus

Yt

»

B

—

10213 JO apmyrusey




Models of trait evolution based on evolutionary processes

Phenotype distribution before selection
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Models of frait evolution based on evolutionary processes

Simulated Browian Motion Trait Evolution . . .
Directional selecfion
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Models of frait evolution based on evolutionary processes

Simulated Browian Motion Trait Evolution

Directional selection

R = Sh?
i _ . OC
w AZ(t) = [z, (t) — z(t)] =
op
E Genetic Drift
R0 = ol 5
b a N

Can we use any of these models in
macroevolution?




Models of frait evolution based on evolutionary processes
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USING GENETIC DRIFT AS A NULL
MODEL OF MACROEVOLUTION

L
Make assumptions of quantitative genetic fraits 0.2 (t) —_ 0.2 .
Generate null expectation under drift b — Ya N
Calculate empirical rates of evolution

Confront them

Slower Faster

than drift than drift

Rates of
evolution
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Gingerich, 1987
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Climbing new peaks is very fast
(given the availability of additive
genetic variance), so large scale
macroevolutionary dynamics are
the result of peak dynamics
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GENETIC DRIFT

Univariate case - rate of evolution is a function
of additive genetic variance and a constant

Multivariate case- rates of evolution are @
function of additive genetic variance for each
trait and a constant (t/Ne)

Divergence should be proportional to
the amount of intraspecific variation

r
o5 (t) = O-C%N

Univariate

t
0\

Multivariate

Y(t) =G
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Rate of evolution
Rate of evolution

Machado. 2020 Simon, Machado, Marroig, 2016
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Contemporary data Fossil data

—- Population: b = 0.4610.05 (30%) b = 0.42+0.04 (37%)
i Species: b = 0.36+0.08¢12%) |
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GENETIC DRIFT

t
Z(t) — GN

- Under genetic driftf divergence
should be proportional to the
amount of infraspecific variation

- Variation and divergence are
proportional

- If's possible that fraits are evolving
neutrally
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D. silvestris 3.87 D. immigrans 3.36 D. repleta 2.93 D. melanogaster 2.30

v

Scaptodrosophila
Mlahlasc‘aeformls 1.76

anonical variate

@® Sophophora Hawai'ians
A Immigrans-tripunctata Scaptodrosophila . RonG 1.18 +0.02 R? =0.91
A Vinlis-repleta Leucophenga
2 Hirtodrosophila Unique taxa , .
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) - . ) o(G variance)
Tab(lje I1 | Macroevolutionary predictions of mutational constraint
models

Divergence Scaling  Phylogenetic
Evolutionary model” Fitness function rate” exponent heritability

Neutral evolution Flat High 2vn) 1 High
Fluctuating Linear High 2 High
directional selection

Divergent selection* Linear Very high 2 Intermediate
>2Vm
BMSE slow! Moving optimumT Low ~0 High
BMS fast!l Moving optimum Very high High
White noise™ Moving optimum Low 0 0
OUTT slow!! Moving optimum Low ~0 Intermediate
OUT intermediatel  Moving optimum  Low 0-1 Low HOUle eT Ol- 20 ] 7
OUTt fast!l Moving optimum  Low ~0 ~0
Observed Low ~1 High




"PARADOX OF PREDICTABILITY"

Tsuboi et al. 2024
« Species can reach peaks rapidly (unlikely to be maladapted)

Rates of evolution are too slow, implying strong influence of stabilizing
selection

Evolution is likely dominated by peak distribution and stabilizing selection

Peak distribution should have no relation to phenotypic variation

Still, the amount of trait variation predicts how traits will evolve on large time
scales.
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POTENTIAL EXPLANATIONS

Development defines
directions of variation
(Rohner & Berger, 2023)

Structure

<

Development governs
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(Ackerman & Cheverud

/ 2004)
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Constraints
\ _, Random selection interacts
— with G (Holstad et al. 2024)

Selection
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Selection aligns G and
divergence (Schluter,
1996)

Selection shapes variation

1979) (imitative epigenotype,
Riedl, 1978)
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t/Ne -> Nuisance parameter

] -3
Machado 2020

Ackerman & Cheverud 2004 Problems?
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Rohner & Berger, 2023
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Trait 1

Riedl, 1978

Correlational selection
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