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This model can be use to

Our general CTMC model: estimate rates of

transition, ancestral
states, and perform a

variety of hypothesis
. Frequency testing questions (and is
Q matrix vector the model we use to

estimate phylogenies)

Frequency vector: For
sequence evolution,
frequency vectors will
show up as base
frequencies.

For time-irreversible
models, they are primarily
used as a “prior” on the
root state.
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What do these models
mean?




Hidden state models

b) HRM+3 model
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But what are
the “Hidden
states’’?

States with unobserved
variation - Not all woody
plants are the same

Different transition rates
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Character construction:
The “hidden work” of phylogenetics &
comparative methods



JCM Natural History Phi




Genomes Phenomes

Well-defined nucleotide state space Many possible ways to represent through
(ACGT) amenable to automation measurements




Elytral declivity
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Rapid progress on any biological problem rests on the hope
that there is at least one viewpoint to each problem that
makes causation relatively simple.

= Houle et al 2010, Phenomics: The Next Challenge

'Phenomics: the next challenge

David Houle*, Diddahally R. Govindaraju* and Stig Omholts'

Abstract | A key goal of biology is to understand phenotypic characteristics, such as health,
disease and evolutionary fitness. Phenotypic variation is produced through a complex web
of interactions between genotype and environment, and such a ‘genotype—phenotype’
map is inaccessible without the detailed phenotypic data that allow these interactions

to be studied. Despite this need, our ability to characterize phenomes — the full set

of phenotypes of an individual — lags behind our ability to characterize genomes.
Phenomics should be recognized and pursued as an independent discipline to enable the
development and adoption of high-throughput and high-dimensional phenotyping.




For every complex problem
there Is a solution which Is
clear, simple, and wrong

- Often attributed to H.L. Mencken,
reporter and supporter of teaching
evolution in the “Scopes Monkey Trial”




What happens when we get the traits “wrong"?

(And what can we do about it)
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Two-Scientist Paradox (Tarasov, 2018)
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Many comparative questions can be
recast as questions about the
state space of evolution



Framing questions as rates vs. states
d

k.

19 | 8

-

Unequal rates Equal rates
equal state spaces Unequal state spaces

“Macroevolutionary Architecture of Traits”



The threshold model . |
A relevant model was invented in 1934 by

Sewall Wright (1889-1988)
shown here in the 1950’s




Dear Joe,

| thought you might like the ability to teach
like Sewall Wright, complete with guinea pig
eraser, though this one works on whiteboards
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» Philos Trans R Soc Lond B Biol Sci. 2005 Jul 7;360(1459):1427-1434. doi: 10.1098/rstb.2005.1669

Using the quantitative genetic threshold model for inferences between
and within species

Joseph Felsenstein L

» Author information » Article notes » Copyright and License information

PMCID: PMC1569509 PMID: 16048785

What is a liability?

How is the behavior of a
threshold trait on a phylogeny
different than a standard
Markov trait?




liability




The threshold model

The threshold model (Wright, 1934; Falconer, 1965), plus Brownian motion

state O state 1

"liability” (unobserved)
Advantages:

1. Predicts polymorphism as a lineage crosses the threshold

2. Soon after the threshold is crossed, one is more likely to revert. Less later.

3. Can allow covariation of characters




The threshold model on a tree
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MCMC on liabilities
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MCMC on liabilities: result of Gibbs sampling

Gibbs sampler for internal node values
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Easy to combine with
continuous characters!

Easily and naturally

handles missing data!!

Simulations with both discrete and continuous characters

character
2

character

standardized
to 1.0

Characters 1 and 3 are continuous, character 2 is discrete. The inferred
covariances are shown for the 100 simulated data sets.



We can model the threshold models with hidden state
models as well!
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Figure 1 The threshold and Mk models yield similar results for posterior probabilities of tip (black)

and node states (gray).
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Inferring Bounded Evolution in Phenotypic Characters from Phylogenetic Comparative Data
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Abstract.—Our understanding of phenotypic evolution over macroevolutionary timescales largely relies on the use of
stochastic models for the evolution of continuous traits over phylogenies. The two most widely used models, Brownian
motion and the Ornstein-Uhlenbeck (OU) process, differ in that the latter includes constraints on the variance that a trait
can attain in a clade. The OU model explicitly models adaptive evolution toward a trait optimum and has thus been widely
used to demonstrate the existence of stabilizing selection on a trait. Here we introduce a new model for the evolution of
continuous characters on phylogenies: Brownian motion between two reflective bounds, or Bounded Brownian Motion
(BBM). This process also models evolutionary constraints, but of a very different kind. We provide analytical expressions
for the likelihood of BBM and present a method to calculate the likelihood nume rically, as well as the associated R code.
Numerical simulations show that BBM achieves good performance: parameter estimation is generally accurate but more
importantly BBM can be very easily discriminated from both BM and OU. We then analyze climatic niche evolution in
diprotodonts and find that BBM best fits this empirical data set, suggesting that the climatic niches of diprotodonts are
bounded by the climate available in Australia and the neighboring islands but probably evolved with little additional
constraints. We conclude that BBM is a valuable addition to the macroevolutionary toolbox, which should enable researchers
to elucidate whether the phenotypic traits they study are evolving under hard constraints between bounds. [BBM; bounds;
evolutionary constraints; macroevolution; maximum likelihood estimation; phylogenetic comparative data.|




Bounded Brownian Motion
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Abstract.—The evolution of quantitative characters over long timescales is often studied using stochastic diffusion models.
The current toolbox available to students of macroevolution is however limited to two main models: Brownian motion and
the Ornstein-Uhlenbeck process, plus some of their extensions. Here, we present a very general model for inferring the
dynamics of quantitative characters evolving under both random diffusion and deterministic forces of any possible shape
and strength, which can accommodate interesting evolutionary scenarios like directional trends, disruptive selection, or
macroevolutionary landscapes with multiple peaks. This model is based on a general partial differential equation widely
used in statistical muahamu the Fokker-Planck equation, also known in population genetics as the Kolmogorov forward
equation. We be used to

describe macr  ““TO compute the likelihood of FPK, we instead discretize the trait  how it can
be fitted to e jntaryal by considering only a set of n points equally spaced between fmination

from alternati data using

Eitice e two extreme values, Bmin and Bmax, a procedure already used for leo of body
mase o the BBM model (Boucher and Démery, 2016).” e PEC

opens the way
model; macroevolution; maximum-likelihood estimation; MCMC methods; phylogenetic comparative data; selection. |
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FIGURES. Posterior distribution of the macroevolutionary landscape estimated for body length evolution in watersnakes (tribe Thamnophiini).
This posterior distribution was obtained by concatenating the two MCMC chains after the first 10% of samples were discarded as burnin (800,000
MCMC steps in total). The figure shows the value of the macroev olutionary landscape (N.exp(—V/(x))) on the y-axis as a function of log10(total
length) measured in centimeters. The dashed black line shows the median value of the macroev olutionary landscapc over the posterior, while
the grey area ranges from the 25% to the 75% quantiles. The solid red line shows the maximum-likelihood estimate of the macroevolutionary
landscape.




BBMV is a flexible method for estimating macroevolutionary landscapes

Discretization could blow up the number of parameters, but by maintaining 1) 1-dimensional change
and 2) using a FPK equation so that transition rates depend only on the estimated parameters of a

simpler function

We can do this for lots of PCMs, and make things simpler



Problem:

PGLS assumes:

The expected value of trait Y

is predicted by the current value of X
with phylogenetically correlated residuals



History matters

...must model
evolution of predictor



Ornstein-Uhlenheck models

“Painting regimes”




Ln(conduit diameter) ~ Temp,,;.

Temp,.. Freeze / Not Freeze
Phenology  Deciduous / Evergreen

398 species
Analyzed in OUwie (Beaulieu et al. 2012)



Global Biodiversity
Information Facility
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Discrete predictors are
...unsatisfying...

Does temperature act on
adaptive optima beyond the
effect of freezing?
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Solution: SLOUCH -

Hansen, Pienaar & Orzack, 2008
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Functions

Step Simmap
Step0 (center = 0°C) Trees
Sigmoid } X100 w/
SingidO (CEENKY) 10 bins
Linear

Linear + step



Functions ALCW dAICC

SigmoidO (CEENKY)




But what about leaf phenology?

Split the dataset into
Deciduous and Evergreen species



Deciduous

Functions ALCW dAICC

Linear




Evergreen
AlCw  dAICc

Functions

Sigmoid
SingidO (center = 0°C)




Log Conduit Diameter

Temperature vs. vessel size

-40 -30 -20 -10 0 10 20
Temp (Celsius)



Suppose you hypothesize an
ecological factor (cold or warm) is
associated with increased rates of

evolution of a discretely
measured trait (light and dark).

In reality, the trait is threshold
trait. Therefore rate variation
comes from two sources:

1. Being close to the threshold
and
2. The ecological factor

1.
Unstructured
Markov Model

A. No Hidden States

B. Two Hidden States

C. Four Hidden States
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Summary

Threshold models bridge continuous and discrete models, reflecting
potentially realistic G-P maps

Hidden state models can also represent structured hypotheses about the
underlying state space

Discretization of continuous data can enable powerful tools for studying
macroevolutionary landscapes

While structured models are special cases of generalized Markov models,
they avoid blowing up the number of parameters, and can be informed
by other things we know about biology.



You can change any parameter of the
model (or the model itself) at the shift

Brownian Motion - 02

Brownian Motion w/trend - ¢,
OU-0, 0% a

EB-02 b

Example questions:

Does the rate of evolution change with habitat?

Does niche space expand on islands?

Do ectotherms have more constrained trait evolution than endotherms?
Is gene expression more constant early or late in cancer progression?
Are Anolis lizard ecomorphs convergent?









