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Sewall Wright’s threshold model has been used in modelling discrete traits that may have a
continuous trait underlying them, but it has proven difficult to make efficient statistical inferences
with it. The availability of Markov chain Monte Carlo (MCMC) methods makes possible likelihood
and Bayesian inference using this model. This paper discusses prospects for the use of the threshold
model in morphological systematics to model the evolution of discrete all-or-none traits. There the
threshold model has the advantage over 0/1 Markov process models in that it not only accommodates
polymorphism within species, but can also allow for correlated evolution of traits with far fewer
parameters that need to be inferred. The MCMC importance sampling methods needed to evaluate
likelihood ratios for the threshold model are introduced and described in some detail.
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1. INTRODUCTION
In 1934, Sewall Wright introduced the threshold model

(Wright 1934a), which he applied (Wright 1934a,b) to

modelling the genetics of the number of toes on the

hind foot of guinea pigs. It posited a discrete character

with a limited number of states (Wright used at least

three, but in this paper I will confine attention to two

states). There is polygenic genetic variation on an

invisible underlying scale, which has come to be called

the liability. The states of the observable scale, which I

call 1 and 0, depend on whether the underlying liability

is or is not above a threshold value. Since the

underlying scale is arbitrary, it is convenient to place

the threshold at zero, and it is also convenient to

assume that the variance of the population’s liability

values is unity. Wright used the model to fit the

frequencies of extra hind digits in crosses between

inbred strains of guinea pigs, trying to explain results of

a large number of crosses by inferring the mean

liabilities of the individual strains.

An alternative way to express the model (used by

Curnow & Smith 1972) is that the genetic effects

produce a liability x, with the probability of the

observed phenotype 1 being the integrated normal

distribution F(x) evaluated at this value. This is

equivalent for a single trait and a single individual,

but not for two traits or two individuals, where the most

straightforward interpretation of this alternative would

seem to rule out environmental correlations. I will

avoid this alternative framework in this paper, prefer-

ring to have the environmental effect added on the

liability scale.
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The threshold model has seen a certain amount of
use in human genetics, much of it as a result of the work
of Falconer (1965, 1967). There it is fitted to data on
the incidence of a trait among relatives of affected
individuals. A useful review of this is given by Lynch &
Walsh (1998, ch. 25). A more extensive review is given
by Curnow & Smith (1972). Figure 1 shows the
threshold model, with the underlying liability trait as
well as the observed discrete phenotype.

In this paper I will discuss prospects for adapting the
threshold model to between-species inference, without
losing the connection to quantitative genetics. None-
theless, that connection becomes rather tenuous. In
particular, I explore prospects for using statistically
efficient methods (maximum likelihood and Bayesian
inference).
2. LIKELIHOOD AND BAYESIAN INFERENCE
As computationally intensive methods became possi-
ble, likelihood and Bayesian methods have gained
ground in many areas of statistics. In the quantitative
genetics and human genetics literature, they have
become the standard against which all other methods
are measured. The threshold model has had to await
this recent wave of interest in computationally intensive
methods, as its mathematics resists simpler compu-
tations. Consider a pedigree of n individuals, some of
them scored for p 0/1 characters. Suppose that these are
determined by underlying liabilities, according to a
threshold model. We must allow the liabilities to have
the usual genetic and environmental variance
components, and to be correlated in an arbitrary
fashion.

If the additive genetic, dominance, and environ-
mental variance components lead to an overall covari-
ance matrix C, we can imagine computing the
likelihood for the pedigree, assuming that the threshold
on each liability scale is at 0. The joint density function
q 2005 The Royal Society



Figure 1. The threshold model of quantitative genetics,
showing the continuous distribution of the underlying liability
characters, and the resulting discrete distribution of the
observed phenotype.
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of the vector of liabilities x is of course the multivariate
normal density

fðx;m;CÞ; (2.1)

where m is the vector of means of the liabilities. This is
an np-dimensional density.

If the observed discrete {0,1} phenotypes for the n
individuals are called the yij, this being the phenotype of
the jth character of the ith individual, the likelihood is
the joint probability of these. This is the multiple
integral of the density function over the region of the
space of liabilities lying on the proper sides of all the
thresholds

LZProbð y;m;CÞ

Z

ð
x112R11

ð
x122R12

.

ð
x1p2R1p

ð
x212R21

.

ð
xnp2Rnp

fðx;m;CÞ;

(2.2)

where the regions of integration Rij are each either
(0, N) if yijZ1 or (KN, 0); if yijZ0. In other words,
the likelihood is a high-dimensional integral of a
corner of a correlated multivariate normal distri-
bution. It is a function of parameters that include
the means and the additive, dominance and environ-
mental variances and covariances between characters.
Our objective will be to calculate likelihoods or
likelihood ratios for different parameter values or, in
the Bayesian case, to infer the posterior distribution of
these parameters.

There are approximations for such integrals, but
they work well only when the number of variables is
modest. Harville & Mee (1984) described maximum
likelihood inference in mixed models using the
Phil. Trans. R. Soc. B (2005)
threshold model, but they were forced to retreat to
approximate evaluation of the necessary integrals. As
with many high-dimensional integral problems, this
one has had to await Monte Carlo sampling methods
such as Markov chain Monte Carlo (MCMC) for
effective treatment.
3. MONTE CARLO SAMPLING METHODS
McCulloch (1994) described the use of MCMC
sampling methods for the threshold model with a
mixed model underlying it. This model includes as
special cases most of the ones we will be interested in.
McCulloch’s general strategy is to sample liabilities,
using an MCMC method known as a Gibbs sampler
and, by doing this many times, to approximate the
likelihood. A similar strategy allows the approxi-
mation of the posterior if one is doing Bayesian
inference. McCulloch’s particular method uses an
EM (expectation–maximization) algorithm to update
parameter values. A Bayesian approach to a similar
problem was made by Sorenson et al. (1995), also
using an MCMC method with Gibbs sampling.

These applications of the MCMC sampling make
the threshold model useable for pedigree data in
quantitative genetics. Using these approaches, it is
possible to infer genetic variances and covariances from
pedigree data with multiple discrete traits. These
methods are part of the increasing use of MCMC
methods for likelihood and Bayesian inference in
quantitative genetics, enabling estimates and
inferences for models that would be intractable
otherwise. In this paper, I will discuss application of
the threshold model to between-species data. First, it
may be helpful to explain the MCMC methods more
generally.
4. MONTE CARLO INTEGRATION
We are approximating a high-dimensional integral for
which no closed-form formula exists. In the case of
pedigree data, we would be integrating over the
unknown values of the liabilities of individuals in the
pedigree, both individuals that we have observed and
those that we have not observed. The integral is
approximated by Monte Carlo integration—drawing a
large sample of points from the domain of integration
and evaluating the contribution to the integral in the
vicinity of these points by evaluating the function at the
points. In effect, we replace the continuous function
that is being integrated by a histogram that approxi-
mates it.

Monte Carlo integration can be very effective, but if
most of the area under the function is in a very
restricted part of the domain, a naive Monte Carlo
approach can fail because most of the samples are taken
from nearly irrelevant areas. The solution to this
problem is to sample non-randomly, concentrating
the sample mostly in the region that contributes most
to the integral. This is importance sampling. One needs
to correct for the concentration of the sampling by
down-weighting each sample so that it counts corres-
pondingly less. Importance sampling has been a staple
of Monte Carlo integration since its (re)discovery in
the 1950s.
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5. MARKOV CHAIN MONTE CARLO
MCMC integration has been around almost as long,
but has been used most widely since the 1980s, when
increasing computer power made it practical. It uses a
specially constructed Markov process to wander
through the domain of integration, sampling points in
a way that is guaranteed to achieve the desired
importance sampling distribution, if one runs the
chain long enough. The issue of how long to run the
chain is particularly important, as the samples from
the domain of integration are not independent, and
if the sampler gets stuck in one region while never
sampling another highly relevant region, the result can
be misleading. While various diagnostic statistics have
been proposed to assess whether the chain has reached
stationarity, these work well only when there are no
isolated peaks. Without analytical insight, we cannot
guarantee that over the horizon there is not a major
peak awaiting discovery.
6. IMPORTANCE SAMPLING
To use MCMC methods, we would sample from an
importance sampling density over liabilities, and then
correct for the fact that the importance sampling has
overconcentrated on some regions. The usual impor-
tance sampling correction when the true density of
liabilities is f(x) and the importance density we choose
is g(x), and when we integrate a function h(x), is simply
to note that the integral is the expectation of the
function h(x) over the density f(x). This can be written
as the expectation of (f(x)/g(x))h(x) if the points are
drawn from the density function g(x) instead of f(x)

Ef ½hðxÞ�Z

ð
x

f ðxÞhðxÞZ

ð
x

gðxÞ
f ðxÞ

gðxÞ
hðxÞ

Z Eg
f ðxÞ

gðxÞ
hðxÞ

� �
: (6.1)

We choose values of x from g(x), and then average
( f /g)h for them.

We will be interested in computing the likelihood at
an arbitrary value q of the parameters, when sampling
given a different value, our ‘driving value’ q0. The
likelihood is the integral over the region of x

corresponding to the observed {0,1} phenotypes. We
can thus write it as the integral over the whole region of
an indicator variable Iy(x) which is 1 whenever the
liabilities x are such that the correct phenotypes y are
obtained.
7. IMPORTANCE SAMPLING METHODS
(a) The naive method

There are many possible importance sampling
schemes. One of the least useful is to draw from the
prior density of liabilities unconditioned on the data,
which is f(x; q0). The above formula then tells us that
we can estimate the likelihood for any other value of q
by averaging f ðx; qÞ=f ðx; q0ÞIyðxÞ over all the values of
the liability that we sample. Most of the time, these
liabilities are outside the relevant region, so that Iy(x) is
0, and we can waste vast amounts of time sampling.
Phil. Trans. R. Soc. B (2005)
(b) Sampling conditional on the data

A much more useful importance sampling density is to
draw the x from the conditional distribution of x given
y. That density is

gðx; q0ÞZProbðxjy; q0ÞZ
IyðxÞf ðx; q0ÞÐ
x IyðxÞf ðx; q0Þ

: (7.1)

The likelihood for some value of q, usually somewhat
different from our current value q0, is

LðqÞZ

ð
x

f ðx; qÞIyðxÞ: (7.2)

The denominator in equation (7.1) when we use it to
compute this quantity turns out to be simply L(q0).
Using that, we can imagine doing the importance
sampling and getting the likelihood as an expectation
over that sampling. Since g(x; q0) is the conditional
distribution of x given the y, it has zero density of x

everywhere except where the observed values of y are
consistent with the x. We can then omit the I term in
the expectation, as it is 1 for all the sampled values of x.

LðqÞZ Egðx;q0Þ

f ðx; qÞ

f ðx; q0Þ=Lðq0Þ

� �
: (7.3)

Moving the L(q0), this can be written as

LðqÞ

Lðq0Þ
Z Egðx;q0Þ

f ðx; qÞ

f ðx; q0Þ

� �
: (7.4)

The likelihood is then approximated by sampling n
times from g(x; q0) and averaging the ratio of f ’s

LðqÞ

Lðq0Þ
z

1

n

Xn
iZ1

f ðxi; qÞ

f ðxi; q0Þ
: (7.5)

As this approximates the likelihood ratio, we can
afterwards find an improved estimate of q by maximiz-
ing it. For this to make a good estimate of the shape of
the curve of likelihood ratios, and hence of the value of q
that achieves the maximum likelihood, the driving value
q0 should be close to the maximum likelihood value.
This strategy has been used in coalescent-based like-
lihood models for population samples of molecular
sequences (Kuhner et al. 1995), and we have applied it
in subsequent papers to models with a variety of evo-
lutionary forces. One has to run MCMC chains multi-
ple times, each time maximizing q to get the driving
value for the next chain. Although there is no mathe-
matical guarantee of convergence as there would be if
this were an EM algorithm, this method can do well.

Note that equation (7.4) computes the likelihood
ratios for a variety of values of q using the same set of
samples of the xi. Thus the estimated curve of
likelihood ratios is smooth, avoiding the jaggedness
that would result from using a separate simulation for
each value of q.

Our ability to do all this depends on being able to
sample from the conditional distribution of x given y.
There are several approaches to this. It may be useful to
mention some of them.
(c) The Gibbs sampler

If the x are vectors with many components, one can
update one component at a time. If we choose xi from
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the conditional distribution of that component given
the values of all the others, then if appropriate
conditions hold we have a Markov chain that will
achieve the joint distribution of x. This is called a
Gibbs sampler; it was introduced by Geman & Geman
(1984). In the present case we will be using it to update
underlying liability values, conditional on the pheno-
type values y.

(d) The Metropolis–Hastings sampler

If we could not draw samples from the conditional
distribution of some of the xi given the others and given
the phenotypes, we could instead use a rejection
method, the Metropolis–Hastings method (Metropolis
et al. 1953; Hastings 1970). The Metropolis sampler
draws nearby points from a proposal distribution,
rejecting them if a uniform random fraction between
0 and 1 turns out to be greater than g(xnew)/g(x). If the
proposal distribution is biased, the Hastings correction
alters this rejection formula to counteract the bias.
Metropolis–Hastings sampling was used by Kuhner
et al. (1995). In the present case it will not be necessary,
as an approximation to a Gibbs sampler succeeds,
though with some reweighting needed to implement it.

There are a number of other major families of
sampling methods. Which one of these samplers is
required depends on the details of our model, to which
we now turn.
8. A BETWEEN-SPECIES APPLICATION
As we have seen, quantitative geneticists have a head-
start in inferring parameters of the threshold model
from pedigree data within species. There are in
addition interesting possibilities in between-species
data; these may help to bring morphological systema-
tics and quantitative genetics into fruitful contact.
Instead of pedigrees of individuals, we will be dealing
with phylogenies (evolutionary trees) of species.

(a) Discrete characters in systematics

It is common for systematists and morphologists to
encounter characters that have discrete states, with
different species having different states. (It is less
common for them to record polymorphisms of these
states, though it does happen.) Traditionally, when
inferences are made of phylogenies, this is done by
parsimony methods, which try to explain the evolution
of these states by finding that phylogeny that can allow
them to evolve with the fewest changes of state.
Parsimony methods have the defect that they can be
statistically inconsistent when there are rate inequalities
among lineages. If the number of states is large, so that
accidental convergence on the same state is unlikely in
different lineages, they can behave acceptably. If rates
of change are low they generally behave well, and are
robust to variation of rates of change from character to
character. In general, a more statistical method is
needed. My book (Felsenstein 2004) can be consulted
for references.

Recently, some attempts have been made to model
the evolution of these characters, using the sorts of
stochastic models used in modelling the changes of
state in DNA sequences. Pagel (1994) used a discrete
Phil. Trans. R. Soc. B (2005)
{0,1} stochastic model for each character, and pro-
posed to use likelihood ratio tests to discover whether
two characters change independently. Lewis (2001)
applied a similar k-state model, assuming that evol-
ution is independent in different characters. In their
models, the population mean is represented by a single
value, which has a Markov process undergoing sudden
changes on the scale of observed phenotypes. In the
threshold model, the underlying liability scale shows
gradual changes.

There is no polymorphism possible in the Pagel’s
and Lewis’s discrete stochastic model, as there is in the
threshold model when the population mean is in the
vicinity of the threshold. If the data were not simply a
single state for each species, but rather gave the discrete
phenotypes of a sample of individuals from each
species, the threshold model could be used to carry
out likelihood inference in a straightforward way, as we
shall see below.

Another difficulty with discrete models in which a
population makes a transition from one state to another
instantaneously is that it is difficult to allow for
covariation among characters. Pagel’s method allows
for it, but in a way that would become cumbersome if
there were more than two characters covarying. Thus,
with even as few as 10 characters, one might need 1023
different parameters to allow state combinations at
other characters to affect the rate of evolution or the
equilibrium frequencies of the states at a character.
Lewis’s model does not attempt to correct for non-
independence of characters.

By contrast, we will see that the threshold model can
allow for covariation of characters, with far fewer
parameters. If the underlying liabilities covary in their
evolution, they will have only p( pC1)/2 covariances. In
the case of 10 characters this would be 55 parameters.
For cases in which individual phenotypes are collected
from a sample within each species, another set of
covariances can be inferred, the phenotypic covariances
of characters among individuals.

(b) A between-species threshold model

Imagine a species with a {0,1} character determined by
a threshold model. As time goes on, gene frequencies
will change by genetic drift and by natural selection. To
know how they change would take a detailed model,
which is usually lacking. As the gene frequencies of the
many loci underlying the liabilities change, the distri-
bution of liabilities on their axis wanders back and
forth. In some populations the mean will be far to one
side of the threshold, and those populations will have
their discrete phenotype values all 1 or all 0. In some
populations it may be near the threshold, and those
populations will show polymorphism, with both 1 and
0 phenotypes found.

In the absence of a detailed model of the changes of
gene frequency, we can model the changes by having
the mean of the liability wander on its scale according
to a Brownian motion. This model was used by
Edwards & Cavalli-Sforza (1964) for change of gene
frequencies in phylogenies of populations, and
extended by me (Felsenstein 1973, 1981) to change
of quantitative characters in phylogenies of populations
or species. In the latter case the changes may be caused
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by genetic drift or by temporally variable selection. I
will use Brownian motion to model change of the
underlying p liabilities of p observable discrete {0,1}
characters in a set of related species. They will be
assumed to have the mean liabilities change by
Brownian motion along the branches of phylogeny.
The variance of the distribution of liabilities within
each population will be assumed to remain constant, so
that all species have the same within-species variance.
A simulation of this model on a simple tree is shown in
figure 2.

Two properties of this threshold model seem
intuitively reasonable.
(i)
Figure 2. A simulation of a threshold model with one
character, evolving by Brownian motion of the liability on a
simple five-species tree. Each lineage is shaded to indicate the
proportion of individuals in state 1 (shown by black shading).
The upper two species end up with polymorphism, the
middle species nearly all with state 0, and the lower ones

Phil.
It allows for polymorphism. Whereas the stochastic
two-state model represents each lineage as having
only a single state, the threshold model envisages a
population with variation in the liability, which
implies for each lineage population frequencies of
the two states. When the mean liability is far from
the threshold, only one state is likely to be found in
any sample. But as the population crosses the
threshold, it should be notably polymorphic.
nearly all with state 1.
(ii)
 The rate of change between states varies through
time. In the stochastic two-state model, the
probability of transition to the other state is the
same, no matter how long the lineage has been in
its current state. But under the threshold model,
the probability that a lineage will be predominantly
one state depends on mean liability. Immediately
after the mean of the lineage has crossed the
threshold, it is quite likely to recross it again. Later
on, the mean may have wandered far into the
region on that side of the threshold, which makes it
much less likely to recross the threshold soon.
Opinions may differ on whether this will hold for
actual discrete characters; to me this property
‘feels’ right.
A limitation of the Brownian motion threshold
model is that the amount of genetic variation on the
liability scale is held constant. One would want to allow
it to change: as genetic drift eliminates variation of the
liability and mutation restores it, the variance of the
liability character should make excursions down and
up. Although it will have a long-term equilibrium value,
there will be periods when variability is greater than at
other times. I have abstracted away from this degree of
realism in the interest of tractability. A varying amount
of variability would lead to a random walk whose rate of
motion varied through time, the rate being auto-
correlated. Varying selection pressures are another
possible source of autocorrelation. I do not know a
sensible way of modelling these phenomena in a way
that is tractable. Adding another hidden variable for the
amount of variation seems likely to get the MCMC
bogged down, with too much sampling needed. So for
the present I will have the motion of the mean liability
be Brownian, which implies that the amount of
variation in the population remains rigidly constant.

The Brownian motion is of p correlated variables,
with no assumption that they have equal variances or
that they are independent. I have explained in some
detail in a number of places (Felsenstein 1988, 2002,
Trans. R. Soc. B (2005)
2004) where the covariances of evolutionary change
come from. They are the result of both genetic
covariances and selective covariances. The former are
the standard additive genetic covariances of quantitat-
ive genetics; the latter are covariances of the selection
pressures through time. While the additive genetic
covariances could in principle be inferred by standard
quantitative genetics breeding experiments, the selec-
tive covariances would only be available by inferring the
overall covariances of evolutionary change by fitting the
species data to a tree, and then removing the effect of
the additive genetic covariances and seeing what was
left. Direct inference of the selective covariances would
only be possible if a detailed mechanistic model of the
functional ecology of the character were available.

We will look into the possibilities of treating two
problems.
(i)
 Given a phylogeny provided by molecular data, to
infer the covariance matrix of evolutionary
changes. This is analogous to quantitative genetic
investigation of realized selection pressures and
realized heritabilities.
(ii)
 Given only the discrete characters, to infer the
phylogeny as well as the covariance matrix of
evolutionary changes. One must be continually
alert to the danger of overfitting here, as the
number of quantities inferred is substantial.
In both cases we will need to have some way of
sampling the liabilities. There are two distinct cases for
this sampling: interior nodes of the tree for which no
phenotype has been observed, and tips of the tree for
which a phenotype is known.
(c) Updating interior nodes

For each node on the tree, if we reconsider its liability,
we will find that it is conditional on the liabilities of its
immediate neighbours. If an interior node of a tree is
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reconsidered, it will typically have three such neigh-
bours: two descendants and its ancestor. Recalling that
the liabilities for the different characters are correlated
in our model, it will be a great advantage if we can
transform them to independence. This is easily done: if
the covariance matrix of evolutionary change is C, we
can use Cholesky decomposition (cf. Press et al. 1992,
section 2.9) or spectral decomposition to find a matrix
A which is its square root, so that CZAAT. Using its
inverse, a new vector of characters zZAK1x can be
computed that will all evolve at equal rates and
independently. As a transformation of the liabilities,
they will be unobserved, but being transformed they do
not individually determine the observed discrete
phenotypes.

On this transformed liability scale, updating interior
nodes can easily be carried out by Gibbs sampling.
Each coordinate is conditional only on that coordinate
in its immediate neighbours. I will show elsewhere that,
if the branches leading to the three neighbours have
lengths v1, v2 and v3, and if for a coordinate of the
transformed liability their values are z1, z2 and z3, the
conditional distribution of z at the node is simply
normal, with mean

mz Z

1

v1

z1 C
1

v2

z2 C
1

v3

z3

1

v1

C
1

v2

C
1

v3

: (8.1)

The neighbours’ values are weighted inversely by the
variance that would be expected to accumulate along
the branches leading to them. The variance of the
transformed liability z is given by

s2
z Z

1

1

v1

C
1

v2

C
1

v3

: (8.2)

Having the mean and variance of z, we can draw from
its distribution. This is a Gibbs sampler. The new value
is always accepted. It can be used to update the interior
nodes of the tree, updating all the transformed
liabilities z.
(d) Updating tips

At the tips, the liabilities cannot be updated as easily.
We need to ensure that the liabilities reconstructed at
the tips are consistent with the observed discrete
phenotypes. To do this we need to be back on the
original liability scale. We want to construct a Gibbs
sampler for the liabilities at the tips. Some methods
suggest themselves.

The first draws liabilities at the tip conditioned on
the liabilities at the nearest internal nodes, but not
conditioned on the observed characters. The liabilities
drawn are then rejected if they are not consistent with
the observed characters, and the process is repeated.
Finally, a set of liabilities for the tip is drawn that are
consistent with the observed phenotypes. If we could
do this, it would be an exact Gibbs sampler.

Suppose that we have a tip with an observed
phenotype yi in character i. Its nearest neighbour is an
interior node. We can take the transformed liabilities z
at that interior node and use them to draw transformed
Phil. Trans. R. Soc. B (2005)
liabilities for the tip. If the branch length between these
two nodes is v, the ith coordinate of the transformed
liability at the tip is obtained by adding a normal variate
with mean 0 and variance v to the corresponding
transformed liability at the interior node.

However, this does not condition on the observed
discrete phenotype at the tip. To do that, we could
transform the newly drawn liabilities at the tip back to
the original liability scale, using the transformation A,
and see whether they then lie on the correct sides of the
thresholds in each character. One convenient way is to
have A defined by the Cholesky decomposition,
because it is then a triangular matrix. As we compute
each successive liability coordinate xi for the tip, we
continue only if it lies on the proper side of the
threshold. This is straightforward, but leads to a large
fraction of cases in which we have to reject the sampled
transformed liabilities, because they produce liabilities
that lead to the wrong discrete phenotypes. We then
have to continue, sampling new sets of zs, until we get
one that leads to the observed phenotypes. This can be
quite tedious and become bogged down with even a
moderate number of characters. Once it succeeds in
sampling a set of xs from the relevant region, it does
carry out a Gibbs sampler step.

It would be desirable to do the sampling in some way
that conditioned on getting xs that were in the
appropriate region. We can factor conditional prob-
ability of the xi given the yi into terms for the
probabilities of the individual xi, each given the
previous xi

ProbðxjyÞZProbðx1jyÞ Probðx2jx1;yÞ

Probðx3jx1; x2; yÞ.

Probðxpjx1; x2;.; xpK1; yÞ:

9>>=
>>;

(8.3)

The conditioning on the full set of yi at each stage still
prevents convenient sampling using this formula. We
might be tempted to simplify further and compute

PðxÞZProbðx1jy1ÞProbðx2jx1; y2Þ

Probðx3jx1; x2; y3Þ.

Probðxpjx1; x2;.; xpK1; ypÞ:

9>>=
>>;

(8.4)

If this were the equivalent to equation (8.3), it would
allow us to sample the xi easily. It is not too hard to
sample from the appropriate tail of a univariate normal
density. Using the triangular form of matrix A, we
would draw x1 from the appropriate tail of a normal
distribution that had the correct mean and variance.
Then, knowing x1, we would calculate the mean and
variance for x2, draw it from the appropriate tail of its
normal distribution, and continue in this way until we
had drawn all of the xi.

Unfortunately, we cannot simply do this, because
the conditioning in equation (8.4) is not equivalent to
that in equation (8.3). The quantities Prob(xjy) and
P(x) are not equal. The matter has not been tested yet,
but we may be able to use the series of draws from the
tails of univariate normal distributions, if we compen-
sate for the inaccuracy by reweighting the results.
Having drawn a point x (the liabilities of the p
characters), we can evaluate the quantities Prob(xjy)
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and P(x) and then assign the outcome x of the draws of
liabilities a weight equal to the ratio

wðxÞZProbðxjyÞ=PðxÞ: (8.5)

To be more precise, we cannot actually compute the
conditional density Prob(xjy), because we do not know
the normalizing constant that would make its integral 1.
But that will simply mean that the weights will be off by
a common factor. For the uses we will make of them,
this will not cause any difficulty. The likelihood
computations then involve a weighted sum of ratios,
extending the formula in equation (7.5). The danger is
that many of the sampled sets of liabilities would lead to
a low weight, with only a small fraction of them
dominating the resulting calculation. That would lead
us to need to take a very large number of samples to get
accuracy. This is a special concern since the overall
weight of a complete set of liabilities would be the
product of the weights at the individual tips.

The sampling using these weights is not precisely a
Gibbs sampler, but rather an importance sampling
approximation to one. There is more to be done in
trying different sampling strategies for liabilities. For
the moment the issue awaits appropriate trials.
9. INFERRING THE COVARIANCES
One of the chief reasons for computing likelihood ratios
in this model is to infer the covariance matrix of the
liabilities, which gives the covariances of evolutionary
change. There may be many reasons for wanting to
infer and test covariances; one is simply to test whether
two characters show correlated evolutionary changes
across a set of species.

Given efficient strategies for sampling liabilities,
these can be used to make approximate maximum
likelihood estimates of the covariances of evolutionary
change. With each new set of liabilities, we have an
observed set of reconstructed changes along each
branch of the tree. If we know the length v of a branch,
and if liabilities i and j show values xi and xj at one end
of the branch and x0i and x0j at the other, then the
contribution of this branch in this sample of liabilities
to the estimate of the covariances is simply
ðxiKx0iÞðxjKx0jÞ=v for the covariance between liabilities
i and j. The estimate of the covariance is an average of
this over all branches. Taking a large number of sets of
liabilities, we average these, and then we can update our
inference of the covariance matrix C of evolutionary
change.

That strategy is related to an EM algorithm. If we
could observe the xi directly, our maximum likelihood
estimate of the covariance matrix C would be these
observed covariances of character changes over
branches, as above. The EM algorithm uses the
expectation of the sufficient statistics (in this case the
observed scaled covariances of changes) given
the observed phenotypes at the tips. These expec-
tations are taken using the current estimates of the
parameters. Those current estimates are then replaced
by the new estimates, and the process continues until it
converges, ultimately making a maximum likelihood
estimate.
Phil. Trans. R. Soc. B (2005)
In the present case, we have driving values of the
parameters, and we take a large (but not infinitely
large) sample of the liabilities. The averages of the
observed covariances can be made. If the resulting
covariances then replace the driving values, and the
process is repeated, one is approximately undertaking
an EM algorithm, which should ultimately arrive in the
vicinity of a maximum likelihood estimate. It will never
totally settle down, because the finiteness of the sample
of sets of liabilities makes for some wandering about.

It will also be possible to approximate the likelihood
surface for the elements of the covariance matrix. This
should allow approximate likelihood ratio tests of
assertions about the covariances.
10. SEARCHING AMONG TREES
Inferring the covariances C is simple compared with the
case where one also wants to infer the tree. It would be
possible to update both liabilities and tree topologies. If
one erased the tree structure in an interior region of the
tree, proposed a new topology there, and also filled in
liabilities in that region, one could do Metropolis–
Hastings rejection sampling. If we use a prior distri-
bution of trees, it is straightforward to compute the
joint probability of the tree and the liabilities both
before and after the change. The ratio of these
probabilities would be used for Metropolis–Hastings
sampling, to sample from a posterior distribution of
trees. If one did not want to do Bayesian inference, one
could correct for the assumed prior on trees and use the
Bayesian sampling strategy to characterize the like-
lihoods of trees.

The chief complication is that one would want to
change the estimates of the covariances as one changed
the tree. This is a much messier matter than altering the
tree; it is a major barrier to developing such a method.
The matter needs careful testing, and there are many
developments ahead. As we are inferring both the
covariance matrix and the tree topology, there may be
rather little statistical power available. I have presented
elsewhere (Felsenstein 2002) degrees of freedom
calculations showing for which combinations of num-
bers of species and numbers of characters there is any
power available to infer both covariances and topolo-
gies. The larger the number of characters, the more
difficult it is to infer both, as the number of parameters
needed rises as the square of the number of characters.

It seems likely that the greatest use of the threshold
model will come when we have a reasonably good
estimate of the phylogeny from molecular data, and
need not rely on the morphology for that inference. We
can then use the MCMC machinery to infer covari-
ances of the evolution of the liabilities across that
known phylogeny. It would also be possible (cf.
Felsenstein 1988) to use a sample of bootstrap
estimates of the phylogeny, and infer covariances for
each. This should correct for the uncertainty of the
inference of the phylogeny.
11. POLYMORPHIC CHARACTERS
If, instead of a single state (0 or 1) for each character in
each species, we had observations on individuals, we
could use the threshold model to fit these data.
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Allowing within-species variation makes another
source of variation necessary, so that we also have
within-species phenotypic covariances. If we had
liabilities for individuals, we could do much the same
kind of analysis as outlined above. We could generate
estimates of the within-species covariances and the
covariances of evolutionary change. The overall like-
lihood would be an expression like equation (2.2), but
with the sum of a matrix containing the between-
species covariances and one for the within-species
phenotypic covariances in place of C.
12. QUANTITATIVE TRAIT LOCI
The models described so far have assumed polygenic
inheritance on the liability scale, with liability con-
trolled by an infinite number of loci. As genomes are
turning out to have rather few genes, interest in finding
the individual loci is increasing. It would be possible to
fit a model with one major locus having a large effect on
the liability scale, with a polygenic threshold model
accounting for the remainder of the variation. If SNP
(single nucleotide polymorphism) markers or micro-
satellite loci could be analysed together with such a
model, there would be the possibility of using between-
species data for mapping purposes. Linkage disequili-
brium of SNP markers to nearby QTL (quantitative
trait locus) loci would cause gene frequency changes at
these loci to be correlated in their changes along the
phylogeny.

A major difficulty in doing this analysis would be that
environmental effects might be confounded with the
species differences, and thus with both the genotypes of
a putative QTL and the genotypes of the markers. In
within-population analyses, one can hope that the
marker genotypes and the QTL genotypes segregate
independently of any environmental effect. But even
with between-population analyses within species, con-
founding of markers with environments is a major
problem, and it would be even more of a problem
between species.

Parts of this work have been funded by National Science
Foundation grant DEB-9815650 and by National Institutes
of Health grant GM051929. I am grateful to Toby Johnson
and to one other reviewer for many constructive suggestions.
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