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abstract: The threshold model developed by Sewall Wright in 1934
can be used to model the evolution of two-state discrete characters
along a phylogeny. The model assumes that there is a quantitative
character, called liability, that is unobserved and that determines the
discrete character according to whether the liability exceeds a thresh-
old value. A Markov chain Monte Carlo algorithm is used to infer
the evolutionary covariances of the liabilities for discrete characters,
sampling liability values consistent with the phylogeny and with the
observed data. The same approach can also be used for continuous
characters by assuming that the tip species have values that have
been observed. In this way, one can make a comparative-methods
analysis that combines both discrete and continuous characters. Sim-
ulations are presented showing that the covariances of the liabilities
are successfully estimated, although precision can be achieved only
by using a large number of species, and we must always worry
whether the covariances and the model apply throughout the group.
An advantage of the threshold model is that the model can be
straightforwardly extended to accommodate within-species pheno-
typic variation and allows an interface with quantitative-genetics
models.

Keywords: phylogeny, comparative method, threshold model,
MCMC, discrete characters, continuous characters.

Introduction

Despite the widespread use of phylogenetic comparative
methods for evolution of continuous characters and the
development of some methods for evolution of discrete
characters, there has been no fully developed method that
could use both classes of characters. Harvey and Pagel
(1991) suggested that discrete characters could be accom-
modated in analysis of phylogenetic contrasts by coding
two states as 0 and 1 and then treating them as if contin-
uous. They derived the means and variances of the con-
trasts from the means and variances of the two-state dis-
crete stochastic model of change and proposed that these
be used while treating the two-state character as one un-
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dergoing Brownian motion. This would allow analysis of
both kinds of data, but the approximation involved is very
rough.

For there to be a fully developed method that combines
continuous and discrete characters, there must be a well-
developed statistical phylogenetic method for discrete
characters. Such a method has been proposed by Pagel
(1994), with further development by Lewis (2001). It as-
sumes that two discrete states exist, called 0 and 1, and
that there is a continuous-time Markov process for changes
between these two states. For two discrete characters, Pagel
has shown how a likelihood ratio test can be done of the
null hypothesis that the state of one character has no effect
on the transition probabilities of the other character.

It would be possible to develop a mixed continuous/
discrete model from Pagel’s model, but there would be
some difficulties. If we had (say) five discrete characters,
we would need to specify what the continuous characters’
processes were for all 25 possible combinations of the states
of the discrete characters. This could involve effects on the
means of changes of the continuous character or on the
covariances of their changes. Some simplification could be
achieved by making the assumption that the processes in
the continuous characters depend on the states of the dis-
crete characters through some function of their states, as
is often done in statistics when log-linear models are used
for contingency tables.

I have suggested an alternative (Felsenstein 1988, pp.
462–463; 2002, pp. 40–41; 2004, pp. 429–431; 2005), which
is to use Sewall Wright’s (1934) threshold model and to
assume that the underlying characters change by covarying
Brownian motion along a tree. In this article, I show that
this also leads to a simple and natural treatment of data
that has both discrete and continuous characters. The key
is that the unobserved characters that underlie the discrete
characters are assumed to have evolutionary covariation
with the continuous characters, much as the latter do with
each other. This has the advantage of simplicity and
straightforwardness. It also naturally allows for within-
species differences in the discrete character. However it is
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computationally difficult, requiring use of a Markov chain
Monte Carlo integration to infer and test the covariation
among the characters. How this can be done is explained
after I briefly review the threshold model.

The Threshold Model

Sewall Wright (1934) developed the threshold model to fit
data on the incidence of extra toes on the hind feet of
guinea pigs in crosses among a series of inbred lines. He
assumed that there was an underlying, unobservable con-
tinuous character, which has come to be called the “lia-
bility.” On this scale there was a threshold value. Any
individual whose liability was above that threshold devel-
oped state 1, and any individual below the threshold de-
veloped state 0 (it does not matter what happens when
the liability is exactly at the threshold value, because such
cases are infinitely improbable). The threshold model has
been used in human genetics (most notably by Falconer
1965) to model discrete traits such as having type I dia-
betes, to fit incidence of the disease among relatives of
affected individuals. Some further review of the model and
these studies will be found in the text by Cavalli-Sforza
and Bodmer (1971). The threshold model has come into
regular use in pedigree analysis of discrete traits in quan-
titative genetics (Gianola 1982).

For phylogenies, I have suggested (Felsenstein 2002) that
we treat the liability values of the population as undergoing
a Brownian motion in their mean values. We assume that
within each species the liability values follow a multivariate
normal distribution, with common within-species covari-
ances that do not change through time. The means of
these normal distributions wander by Brownian motion
along branches of the phylogeny, in the same way that
means of continuous characters do. The covariances of
changes in the species means along the phylogeny are the
evolutionary covariances, which differ from the within-
species covariances. At any moment, we could, in prin-
ciple, calculate the number of within-species standard de-
viations between the population means and the threshold.
For example, for one discrete character, if the mean were
1 SD above the threshold, we would expect that 0.8413 of
the individuals in that population would show state 1 and
that 0.1587 of them would show state 0. A similar but
more complex calculation can be done if there are multiple
discrete characters.

Although this model can be used to make integrated
inferences for discrete characters within and between spe-
cies, for the present let us ignore within-species variation
and covariation and assume that in each population we
observe the more frequent of the two states of the discrete
character. If the population mean of the liability exceeds
the threshold, the state we then observe is 1; otherwise, it

is 0. The extension of this analysis to within-species var-
iation in the discrete characters is straightforward and is
discussed briefly below. For now, when we discuss the
liability values in a lineage (or at a node on the tree), this
is to be taken to be the population means of the liabilities,
and the covariances of their changes are taken to be the
evolutionary covariances.

Hadfield and Nakagawa (2010) have noted that all such
models are equivalent to multivariate “mixed models” of
quantitative genetics. For discrete traits, such as our 0/1
trait, they note the addition of “transfer functions” to ac-
commodate them. No doubt this is true and worth ex-
ploring. For continuous characters, most of the examples
they give involve only a single character with a scalar var-
iance rather than multiple characters with a covariance
matrix. For categorical characters such as 0/1 characters,
they do discuss multivariate methods, although the trans-
fer function that they use has the value of the categorical
variable drawn from a Poisson distribution with the lia-
bility as its mean. In the present model, the transfer func-
tion should instead be a step function that rises from 0
to 1 at the threshold. Hadfield and Nakagawa argue that
existing general-mixed-model software uses advanced al-
gorithmics that would be vastly better than the specialized
programs in use in comparative biology. This will have to
be proven in particular cases. At a minimum, machinery
would have to be added to present-day mixed-model pro-
grams to use a phylogeny to set up appropriate design
matrices.

Ives and Garland (2010) also put forward a model in
which there is logistic regression of discrete traits on con-
tinuous variables. In their model, the discrete traits change
along the tree according to a two-state stochastic process
similar to that used by Pagel (1994) and Lewis (2001).
The continuous characters influence the discrete traits by
logistic regression. However, the continuous characters are
assumed to be known traits of the present-day species.
They mention the possibility that these continuous char-
acters could themselves evolve along the tree, but they do
not develop methods for that case.

This article describes a method embodied in a Markov
chain Monte Carlo (MCMC) program, Threshml, to infer
the covariance matrix of changes in continuous characters
and in the liabilities of the discrete characters along a
phylogeny.

Sampling from the Unobserved Values

For continuous characters evolving by correlated Brown-
ian motion, the joint distribution of the values at the in-
terior nodes of the tree and at the tips is multivariate
normal, with covariances that are easily calculated once
the covariances of change in the means of continuous
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characters are known. This applies equally to observed
continuous characters and to the liabilities that underlie
the discrete traits. A computation of the joint likelihood
for all of the observed characters integrates over all possible
character values at the interior nodes of the tree. For the
discrete characters, it must also integrate over all of the
liability values in the tips that fall on the correct sides of
the thresholds. Thus, if xc are the observed values of the
continuous characters at the tips, if the elements of y are
the phenotypes of the discrete characters, and if x� are the
(unknown) liability values at the tips, then the likelihood
for tree T can be written in terms of the covariance matrix
A of changes per unit branch length, and the expectation
vectors and , as the probability densitym mc �

L(T) p f(x , yFm , m , A, T)c c �

p f(x , x Fm , m , A, T), (1)� c � c �

x �X(y)�

where X(y) is the region of liability values in which all of
the liabilities are on the correct sides of their respective
thresholds, so that they lead to the observed discrete
characters.

The density f is the joint multivariate normal density
of the continuous characters and the liability values at the
tips. Carrying out the integration in equation (1) involves
finding the volume under this density in a multivariate
corner of the density function (the corner in which all the
liabilities are in region X). This is computationally very
difficult. The objective of the method used here is not to
compute the likelihood. It is assumed that the tree, in-
cluding branch lengths, is supplied by the user (presum-
ably having been inferred from molecular sequences). We
want to make a maximum likelihood inference of the co-
variances A among characters of their changes along the
branches of the tree. This will be done with an MCMC
expectation-maximization (EM) algorithm (Guo and
Thompson 1994). The algorithm used here for the dis-
crete-character liabilities will differ from the more com-
plicated one I previously proposed (Felsenstein 2005).

Stochastic EM Algorithm for the Covariances

If we somehow knew the values of the observed continuous
characters and the unobserved liability characters at the
tips of the tree and also their values at all interior nodes
of the tree, we could make a maximum likelihood estimate
of the evolutionary covariances A. The covariance between
characters i and j would be estimated by computing

′ ′(x � x )x � x1 ki ki kj kj
â p , (2)�ij b vk k

where xki is the value of character i at one end of branch
k, and is the value of character i at the other end (and′xki

similarly for character j), is the length of branch k, andvk

b is the number of branches in the tree. I show below that
we can avoid the need to infer the values of the characters
at the root of the tree.

The EM algorithm uses knowledge of the distributions
to compute the expectation of this covariance formula over
the distribution of the unobserved values of x, given the
observed values and the current estimates of the param-
eters. These covariances become the new estimates, as they
would if we were making maximum likelihood estimates
of the covariances. This expectation and the maximization
of the likelihood are repeated iteratively until the estimate
converges (Dempster et al. 1977).

In the present case, we do not know the distribution of
the values of x conditional on the observed data, but we
can use MCMC sampling to draw a large sample of points
from this distribution and average the estimates of the
covariances over the points in that sample. This allows us
to make an MCMC EM procedure. As such, it will not
converge precisely to the maximum likelihood estimate
but will come near it and then wander in that vicinity. At
each stage, we run the Markov chain for as long as we
can, to take a sufficiently large sample of points. How near
the resulting estimate comes to the maximum likelihood
estimate depends on how large a sample we are able to
choose.

Under the Brownian motion model that we are using,
the expectation of the change of each character in a branch
is 0. Thus, no parameters are needed for the means of the
changes.

Strategy of MCMC Sampling

A Gibbs sampler (Geman and Geman 1984; Gelfand and
Smith 1990) will be used for the continuous characters
and the liabilities at the interior nodes of the tree, and a
Metropolis sampler (Metropolis et al. 1953) will be used
for drawing the species mean liabilities at the tips. The
continuous characters do not have to be sampled at the
tips, because they are observed. A Gibbs sampler is pref-
erable when it can be done, because it samples precisely
from the desired distribution without any need to reject
some of the samples and try again. For the liabilities at
the tips, the distribution has a truncated normal density,
and it is difficult to sample directly from that distribution.
The Metropolis sampler is a good practical alternative for
that case. I describe the details of the sampling below.

A provisional estimate of the covariances of the char-
acters is maintained. At each stage, it is used to transform
the characters so that, given that these were the true co-
variances, the changes of the new characters would be
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independent. The MCMC sampler is then run with these
new characters assumed to be independent, and an esti-
mate of the covariances of these putatively independent
characters is obtained. This is used to further update the
estimates of the covariances of the original characters. For
example, suppose that for the mth cycle of the MCMC
EM algorithm our provisional estimate of the covariance
matrix of changes is inferred to be C. If the vector of
original continuous characters and liabilities were called y
and had these covariances, then we could use a matrix
square root S of C that satisfies . We can thenTC p SS
obtain a new vector of characters , which would�1z p S y
have unit variance and would be uncorrelated.

If the MCMC sampling of unobserved values of z now
infers that the vector of transformed characters z are not
independent but actually have covariance matrix B, whose
matrix square root is R, then it can be shown (as it is in
app. A) that we can make a set of independent variables
by computing R�1z. The matrix square root that trans-
forms the original characters is then modified from S to
SR, so that its inverse is R�1S�1.

The MCMC run consists of a series of Markov chain
runs (e.g., 30 chains). Each is run for a large number of
steps (such as 100,000) After each chain, the covariance
matrix B is inferred and the transform to independence
is adjusted by premultiplying S�1 by R�1.

Gibbs Sampling at Interior Nodes

The sampling of character values at interior nodes in the
tree is done by a Gibbs sampler. This is done for both the
continuous characters and the liabilities of the discrete
characters. At each stage of the EM iteration, the current
estimate of the covariances is assumed to be known. If we
consider characters z, transformed so that they have unit
variances and zero covariances, we can update the value
of each character at each interior node without considering
any other character, and we can consider only the im-
mediately neighboring nodes in the tree. Thus, if an in-
terior node connects to three other nodes, numbered 1–
3, we can draw a new value for a character based only on
the values of that character in these three neighboring
nodes in the tree.

Previously (Felsenstein 2005), I have given the algorithm
for Gibbs sampling of interior nodes under a Brownian
motion model. Appendix B derives these formulas. If a
node has three neighbors, the ith one a branch length vi

away, then the Gibbs sampling draws a normally distrib-
uted value x that has expectation

(1/v )z � (1/v )z � (1/v )z1 1 2 2 3 3
�[z] p (3)

(1/v ) � (1/v ) � (1/v )1 2 3

and variance

1
2j p . (4)z (1/v ) � (1/v ) � (1/v )1 2 3

This is done separately, and thus independently, in each
of the transformed characters. For multifurcating nodes,
the extension to more neighbors is obvious. The result is
the same no matter where the tree is rooted.

Sampling the Liabilities at the Tips

While the values of the continuous characters at the tips
of the tree are known, the values of the liabilities at the
tips are not known, but they must be consistent with the
observed discrete characters. In the previous article (Fel-
senstein 2005), a sampler was proposed, together with a
rather elaborate reweighting method. This has been re-
considered and replaced by a simpler Metropolis sampler
that makes small changes in the liabilities, accepting or
rejecting them according to whether they cause the liability
to conflict with the discrete character. A Metropolis sam-
pler is like a Gibbs sampler, except that it does not draw
directly from the conditional distribution of the quantity
but adds an acceptance-rejection step formulated to pro-
duce the desired conditional distribution.

The sampling of the independent (transformed) char-
acters is very simple: each is changed by an amount drawn
independently from a normal distribution whose mean is
0 and whose variance is a parameter set by the user. This
is made more complicated by the covariances among the
characters. The characters z that are sampled on the trans-
formed scales, where they are expected to be independent,
must be examined to see whether they result in a conflict
between any of the liabilities and the observed discrete
characters. If the current square root of the covariance
matrix of the original continuous characters and the lia-
bilities is called S, then undoes the transformationy p Sz
and returns us to the original character scale. We can then
check the variable y, or at least the coordinates in it that
are liabilities, to see whether they are on the wrong side
of their thresholds.

The computation is made much easier if, in the vector
y, the continuous characters are placed first and then fol-
lowed by the discrete-character liabilities. The matrix
square root S that we use is lower-triangular, so that in
returning to the original scale, the jth character is a linear
transformation of the independent characters z1, z2, ..., zj.
We do not allow any change in the continuous characters
at the tips of the tree. These are affected only by the first
pc of the independent characters, and so those are not
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changed. The next affect the liabilities of thep p p � pd c

discrete characters, and these must be changed. As each
of these pd independent characters is sampled, we can com-
pute another one of the liabilities and immediately check
it with its threshold value. The entire set of changes is
rejected if any one of the liabilities is on the wrong side
of its threshold value. Thus, when there are seven contin-
uous characters and z10 is being sampled, after new values

and have been drawn successfully, we draw a new′ ′z z8 9

value of z10, called , and immediately compute′z10

′x p s z � s z � s z � s z � s z10 10, 1 1 10, 2 2 10, 3 3 10, 4 4 10, 5 5 (5)
′ ′ ′� s z � s z � s z � s z � s z .10, 6 6 10, 7 7 10, 8 8 10, 9 9 10, 10 10

We then check to see on which side of its threshold it′x10

is. If it is on the wrong side, then the whole set of tip
liabilities is rejected and the process starts over with the
observed tip values of the continuous characters and the
choice of a new value of z8, and it again proceeds to z9,
z10, and so on, again rejecting the whole set when any of
the is found to be on the wrong side of the threshold.′xi

Rejection rates can be monitored, and the parameter that
is the variance of the proposed normally distributed
changes of the zi can be adjusted to be smaller if there is
too much rejection and larger if there is too little.

If the new values of the independent characters pass this
test, so that the resulting liabilities imply the correct dis-
crete character values, they still must be checked as to
whether they have too low a density of the normal dis-
tribution of the independent characters. Appendix C
shows this calculation, which is straightforward. If any of
the values of the independent characters is rejected (say

), then we start over at independent characterp � j p �c c

and draw new values of the independent characters1
, , and so forth, until we succeed in drawingp � 1 p � 2c c

all pd of them. The user-defined parameter for the size of
the changes in the independent characters allows us to
keep the acceptance rate of the proposals from being either
too high or too low.

Testing Hypotheses about the Covariances

Hypotheses of interest about the covariation of the char-
acters include whether characters are independent of one
another in their evolution. There is some question about
how to test this and what questions are meaningful. Testing
whether one particular covariance, say the one between
characters 6 and 8, is nonzero seems of little biological
relevance, as the two could still be connected by patterns
of covariation with other characters. A more reasonable
hypothesis to test would be whether a set of characters
evolves independently of all of the other characters.

A likelihood ratio test can be constructed from the Mar-

kov chain Monte Carlo sampling. The probability (or
probability density) of the data under a hypothesis whose
parameter values are V can be written as

Pr (DFV) p f(x; C), (6)�
X(y)

where x is the vector of values of the continuous characters
and liabilities at all nodes of the tree, including interior
nodes, X(y) is the set of points for which x agrees with
the observed discrete phenotypes and C is the matrix of
covariances of the characters. The matrix C is affected by
the parameters V. The quantity should be un-Pr (DFV)
derstood as a probability if all characters are discrete and
as a probability density otherwise.

The MCMC sampler draws from an importance-sam-
pling density . For the likelihood ratio test ofPr (DFV )0

whether one set of variables does not covary with the other
variables, the covariance matrix under the null hypothesis
is C0, in which the covariances between the two sets of
variables are constrained to remain 0. The density function
of the x values is given by equation (6), with C equal to
C0. The basic importance-sampling equation in this case
becomes

( )f xFC
Pr (DFV) p � , (7)[ ]( )f xFC / Pr (DFV )0 0

which is easily rearranged into

Pr (DFV) f(xFC)
p � . (8)[ ]Pr (DFV ) f(xFC )0 0

When likelihood ratio testing of covariances is carried
out, Threshml does an extra set of sampling chains, sam-
pling with the covariance matrix C constrained to force
the covariances between sets of variables to 0. For each
point at which samples are taken for the test, the density
function of the continuous characters and liabilities at all
nodes on the tree are computed under the null hypothesis
and under its alternative. The ratio of these densities is
averaged over all of the samples. The result is a likelihood
ratio that can be used in a likelihood ratio test. If there
are p characters, divided into two sets with p1 and p2 char-
acters, the number of degrees of freedom for the test is
p1p2.

Restricted Maximum Likelihood

A subtlety is what we have done regarding the mean vector
in the above expressions. You may have noticed that wem

did not infer it. We sampled from the distribution of char-
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acter values at the interior nodes of the unrooted tree,
which did not include a root node below the rootmost
fork. The expectations and variances of the continuous-
character value at a fork are, as we have seen, influenced
by the values at the neighboring nodes, weighted inversely
by the branch lengths to those nodes. By allowing that
root node no influence, we assumed, in effect, that it was
infinitely far removed in the past. That, in turn, has the
interesting effect that the location of the root on the tree
does not matter. No matter where in the tree we connect
the root, the character values at the other interior nodes
will be unaffected by where that root is.

The result is something like REML (restricted maximum
likelihood) estimation. The joint distribution of the char-
acter values at the tips of the tree will depend only on the
unrooted form of the phylogeny. In the case where there
are no discrete characters, the inferences converge on the
results of an ordinary analysis using contrasts—and those
are REML estimates. However, when there are discrete
characters, the inferences of root liability are not depen-
dent only on the differences in character values between
tips of the tree, as they would be in REML estimation.
The matter deserves more careful attention than I can give
it here.

Issues of Power

One serious limitation of the analyses proposed here is
that there is very limited power for inference of covariation
of liabilities with each other or with continuous characters.
If we have a phylogeny with 100 species at the tips, then
the usual contrasts method for inferring the evolutionary
covariances makes that inference from only 99 indepen-
dent quantities. That would give the correlation between
two characters a standard deviation (if the true correlation
is small) of 0.101535, which is fairly large for a quantity
that is constrained to be between �1 and 1.

However, the situation is even worse when we have
thresholded continuous characters and observe only on
which side of the threshold they are. Then, two sister spe-
cies will often be on the same side of the threshold, and
thus comparison of their phenotypes provides us with little
information. In the continuous-characters case, if there is
no within-species sampling variation, we can hope to use
the small difference between the sibling species and scale
that by dividing by the intervening branch length—but
for discrete characters that will not work. So the effective
amount of information is considerably less than 99 in-
dependent data points.

A similar problem affects the evolutionary covariation
of continuous characters when there is also within-species
covariation. The signal of change between closely related
pairs of species tends in that case to be swamped by the

noise of within-species variation. If there were no within-
species covariation, we could take the mean phenotypes
of the two species and make contrasts between them in
each character. Their covariances would then be propor-
tional to the branch length on the path connecting these
two species. The branch length would be small, which
would make even small differences between sibling species
potentially informative. But in the presence of within-
species covariance, the covariances of the contrasts are
mostly affected by that sampling error, and they convey
very little information about the covariances of evolu-
tionary changes.

One might hope to “make it up in volume” by using
less closely related species to get a much larger tree. The
difficulty with this is that we are relying on a very crude
evolutionary model, and as we deal with a broader range
of species, we are correspondingly less confident that the
model holds throughout the tree and that the covariation
can be considered to be the same.

The lesson from all this is that we have a limited amount
that we can discover, and we may have to learn how to
be satisfied with that. In particular, inferences about the
phenotypes and genotypes of ancestral species, inferences
that are beloved of popular science media, have large and
irreducible errors. Finding ways of propagating that un-
certainty through the further analyses that we do will be
a major challenge.

The Program

A computer program, Threshml, has been written to infer
covariances of threshold characters as well as covariances
of both continuous characters and threshold characters. It
uses the MCMC algorithm outlined here. The program,
which will also be included in version 3.7a of the PHYLIP
package, can, until that release, be downloaded at http://
evolution.gs.washington.edu/phylip/download/threshml/.
It is available as C source code and as Windows, Linux,
and Mac OS X executables, with HTML documentation.
After the release of version 3.7a, Threshml will be available
with the PHYLIP package at its usual Web site, http://
evolution.gs.washington.edu/phylip.html.

Simulations

Some computer simulations of the behavior of the method
have been done for a single tree with 100 species (shown
in fig. 1). Changes of three characters were simulated under
a Brownian motion model, where the true covariance ma-
trix (which remained unknown to Threshml) was taken
to be

http://evolution.gs.washington.edu/phylip/download/threshml/
http://evolution.gs.washington.edu/phylip/download/threshml/
http://evolution.gs.washington.edu/phylip.html
http://evolution.gs.washington.edu/phylip.html
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Figure 1: Phylogeny of 100 species used for the simulations. The phylogeny was generated by a pure birth process, with a birth rate of 1
per unit time.

1.64 0.8 0
0.8 1.36 �0.6 .[ ]
0 �0.6 1.0

The Brownian motion started at phenotypes of (0, 0, 0)
and was simulated in 100 replicates, each replicate gen-
erating one data set.

Discrete-Character Simulation

In this case, the data set was taken and all three characters
thresholded, so that each became 0 or 1. As noted above,

the scale of the threshold characters is arbitrary (as long
as there is no within-species variation). As the variance of
those liability characters was constrained to remain 1, we
were, in effect, inferring only the correlation coefficients
between the liabilities. There were three such coefficients
in the covariance matrix, which was then expected to be

1 0.535672 0
0.535672 1 �0.514496 .[ ]

0 �0.514496 1

Figure 2 shows the histogram of the 100 values of the



Figure 2: Histograms of correlation coefficients r12, r13, and r23 for the characters that covaried as described in the text. One hundred data
sets were simulated. Their true correlation coefficients were 0.535672, 0, and �0.514496, respectively. These values are shown by the triangles.

Figure 3: Histograms of correlation coefficients r12, r13, and r23 with the same simulation of 100 data sets as in figure 2, except that only
character 2 was thresholded and the exact numerical values of characters 1 and 3 were used as quantitative characters. The true values are
shown by the triangles.
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Figure 4: Histograms of covariance estimates for the 100 replicates of the mixed continuous/discrete simulation (the one also described
by fig. 3). The histograms for the elements of the lower triangle of the covariance matrix are shown. Character 2, the discrete character, is
always standardized so that its variance is 1. The true values are shown by the triangles.

three correlation coefficients. The triangles show the true
values. There is little sign of bias, although the values are
not narrowly clustered around the true values. When the
truth is a positive or a negative correlation, the inference
is able to infer only a little more than the sign of the
correlation correctly.

Discrete and Continuous Characters

In this case, the same Brownian motion simulation was
used, but only character 2 was thresholded to become a
discrete character. Figure 3 shows the histogram of the 100
correlation coefficients. Again, there is no noticeable bias,
and again the inference of the correlations is very rough
and can tell us little more than the sign of the correlation.

The covariances for these three characters are shown in

figure 4 for that simulation. Character 2 (the discrete-
character liability) had its inferred variance standardized
to 1, so that its covariance with the other two characters
was correspondingly affected. The triangles that show the
true values are, in the case of covariances with character
2, adjusted for this standardization.

Within-Species Covariances

If we consider the variation and covariation of the liabil-
ities within species, we can make an analysis of both the
within-species and the between-species character covari-
ation. We would then have two covariance matrices to
infer, one the evolutionary covariances and the other the
within-species phenotypic covariances. The data would no
longer correspond to the species means (or the discrete
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characters implied by the species mean liability) but would
consist of discrete and continuous phenotypes recorded
from a sample of individuals from each species. Sample
sizes could vary from species to species, being as small as
1 for some species.

I have not yet implemented or tested such a model, but
inferences could be made for it with an MCMC strategy
quite similar to that outlined here. The liabilities (and
continuous-character values) for the species means would
be sampled, as well as the liabilities and continuous-char-
acter values for the individuals and for the hypothetical
ancestral nodes. The individuals in each within-species
sample would lie at the tips of branches radiating from
the population mean, with branch length 1. Thus, if the
sample size for a species was 4, there would be a node on
the tree that represented the species mean, and a quad-
rifurcation from this would lead to the nodes for the in-
dividuals, with branch lengths 1. The within-species co-
variances would be estimated, in the MCMC EM iteration,
from the changes of the liabilities and continuous-char-
acter values along those branches. The evolutionary co-
variances would, as before, be estimated from the changes
along the other branches, the ones connecting the different
species and their ancestors.

The analyses described in this article do not attempt to
take within-species variation into account but instead rep-
resent each discrete character of a species by the most
frequent state and each continuous character by the species
mean of that character. When there are no discrete char-
acters, the estimates of the within-species covariances and
the evolutionary covariances from the MCMC EM pro-
cedure should be close to those obtained for the corre-
sponding statistical model in a comparative-method anal-
ysis with sampling error (Felsenstein 2008). It has not
escaped my attention that a quite similar strategy could
be used when some species are represented by samples
from multiple populations, especially when we also have
estimates of the rates and pattern of migration between
those populations and of their population sizes.

Connection to Quantitative-Genetics Experiments

Another fruitful area for development of these models is
to connect them as well to quantitative-genetics experi-
ments that estimate the additive genetic covariances be-
tween characters. I have already discussed this with respect
to within- and between-species analyses of continuous
characters (Felsenstein 2008). The same applies to data
sets that contain discrete characters, when the threshold
model can be used for them. A combined quantitative-
genetics and comparative analysis seems the only way to
infer how much of the evolutionary covariation reflects

additive genetic covariances and how much reflects selec-
tive covariances, which describe the covariances of selec-
tion pressures (Felsenstein 1988). Covariation of changes
in phenotypes along a phylogeny may reflect either or
both, and a pure comparative-methods analysis cannot
tease them apart.
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APPENDIX A

Updating Transformations of Variables

If a vector y of variables whose means are 0 is inferred to
have a covariance matrix C, where , then if weTC p SS
can invert matrix S we can obtain new variables z p

. The covariances of z would then be . This is�1 TS y �[zz ]
then , which is . Since the�1 T �1 T �1 T �1 T� S y y (S ) S � y y (S )[ ] [ ]
expectation of yyT is SST, we can easily see (substituting
this) that the covariance matrix of z is supposed to be the
identity matrix I.

Suppose that we obtain z using this transformation but
then find, on further sampling, that its covariance matrix
is actually B. If we obtain the matrix square root R of B,
such that , then we can make a further transform,TB p RR

. The covariances of u would then be�1u p R z

T �1 T �1 T �1 �1 T� uu p R � zz (R ) p R B(R )[ ] [ ]
�1 T �1 Tp R RR (R ) p I.

In the Metropolis algorithm for sampling liabilities, we
make use of the matrix square root S of the covariance
matrix C. Once we have computed R and find that it is
not the identity matrix, the transform is u p

, so that S must now be replaced by SR.�1 �1 �1R S x p SR x
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APPENDIX B

Gibbs Sampler for Interior-Node Character Values
under Brownian Motion

Suppose that we have a character x that evolves on a tree
by Brownian motion with variance 1 per unit time. Con-
sider using a Gibbs sampler to choose a new value for the
character at one node, where this node has three neigh-
boring nodes whose values are x1, x2, and x3. Suppose that
the variances of change on branches 1, 2, and 3 are ,v1

, and , respectively. The value chosen in the Gibbsv v2 3

sampler will have a normal distribution, the same as the
conditional distribution of x, given x1, x2, and x3. If we
take node 1 as the immediate ancestor of our node and
nodes 2 and 3 as its descendants, then the joint distribution
of x2, x3, and x is normal, with means all x1 and covariance
matrix

v � v v v1 2 1 1  S S11 12 
 v v � v v p , (B1)1 1 3 1  S S 21 22v v v 1 1 1

where the blocks are

v � v v1 2 1S p ,11 [ ]v v � v1 1 3

v1 TS p p S , (B2)12 21[ ]v1

S p [v ]22 1

For the multivariate normal distribution, if we compute
the expectation of x conditional on the values of x2 and
x3, this is

x � x�1 2 1�[x] p x � S S (B3)1 21 11 [ ]x � x3 1

(e.g., Rao 1973, pp. 522–523), and the variance of x is

�1Var [x] p S � S S S . (B4)22 21 11 12

These expressions can easily be worked out in straight-
forward fashion, and they lead to the results in equations
(3) and (4).

APPENDIX C

Rejection Rule for Independent Characters at Tips

When new values are sampled for the independent char-
acters at the tips, these are for independent characters

, , ..., n. As each is drawn, it is checked form � 1 m � 2

whether the corresponding discrete character’s liability is
on the wrong side of its threshold. After all of them pass
this test, we must also check whether the density of the
distribution of this set of independent characters is too
low. If the new values of the independent characters are

, , ..., , then the density of this set of independent′ ′ ′x x xm�1 m�2 n

characters, conditional on the nearest (interior) node,
node j, which is a branch length from this tip, isv

n ′ (j) 21 1 1 (x � x )i iexp � . (C1)� [ ]� �ipm�1 2 v2p v

When this is compared this to the density at the old values
, , ..., xn, their ratio simplifies tox xm�1 m�2

n ′ ′ (j)� (x � x )(x � x � 2x )i i i i iipm�1
exp � . (C2)[ ]2v

The acceptance rule is, as usual, that a uniform random
number be less than this ratio.
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Milkweed Asclepias cornuti flower with the hoods cut away. “The visitor, attracted by the odor, alights to suck the nectar secreted in the
hoods. In its progress over the blossom some one of the hairs of its legs is sure to slide into the slit between the hoods. Pursuing his way
by drawing up his leg, the hair will be guided by two flanges at the sides into the upper and narrower part of the slit, and there become
fast. Feeling a detention, the captive will pull to release himself, and, if possessed of sufficient force, will bring out of the sacs at the sides
two pear-shaped pollinia, each fastened to the lamina, or gland, by a short appendage.” From “The Milkweeds” by Joseph F. James (American
Naturalist, 1887, 21:605–615).


