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Summary

1. Integrating out the random effects in generalised linear mixed models (GLMM) cannot be done analytically

unless the response is Gaussian.Many stochastic, deterministic or hybrid algorithms have been developed to per-

form the integration.With categorical data and probit link (aka the thresholdmodel), the random effect structure

can be partitioned into a part that can be easily integrated deterministically (the R-structure) and a part that can-

not (theG-structure).

2. We show that in the context of phylogenetic mixedmodels, part of the G-structure (the phylogenetic effects at

the tips) can be moved into the R-structure and integrated out deterministically. This result follows directly from

the concept of the reduced animal model from quantitative genetics (Journal of Animal Science, 51, 1980, 1277)

and its implications for discrete data (Genetics Selection Evolution, 42, 2010, 1).

3. Although the conditional distribution of the phylogenetic variance is no longer in standard from, it does pro-

vide a stable and efficient 2-blockMCMC algorithm for situations when the phylogenetic heritability is assumed

to be one. We show that a GLMMwith such an assumption is equivalent to the model proposed by Felsenstein

(American Naturalist, 179, 2005, 145). Extensions to multivariate models are straightforward and a 3-block algo-

rithm can be constructed when there is only a single categorical trait but multiple Gaussian traits. With ≥2 cate-
gorical traits, an additional non-Gibbs update is required for the correlation (sub)matrix.

4. An implementation of these algorithms is distributed in the R package MCMCglmm and is up to several

orders ofmagnitude faster than published alternatives.

Key-words: quantitative genetics, population genetics, software, bioinformatics, comparative

analysis, evolutionary biology

Twomajor modelling frameworks are currently used in phylo-

genetic comparative biology to analyse the evolution of cate-

gorical characters. The first, and currently the most popular,

was introduced by Pagel (1994) and was inspired by the Jukes

& Cantor (1969) model of base substitutions in DNA. Under

this model, the state of daughter lineages is conditionally inde-

pendent given the parental state. The second framework was

developed at the turn of last century by biometricians (Pearson

1900) and first applied in a phylogenetic context by Felsenstein

(2005). Under this model, the state of daughter lineages is con-

ditionally independent given the parental probability of being

in a particular state. In this manuscript, we concentrate on this

second class of models that focus on the evolution of the

underlying probability.

Pearson (1900) developed the foundations of what became

to be known as Wright’s (1934a,b) threshold model whereby

the probability of being in a particular state is assumed to be

normally distributed on the probit scale (Bliss 1935). In a quan-

titative genetic framework, these normally distributed latent

variables (also called liabilities) are further assumed to be the

sum of normally distributed breeding values and environmen-

tal deviations (Falconer 1960). Later, the model (with fixed

effects only) was subsumed within the class of generalised lin-

ear models (Nelder & Wedderburn 1972), and with the addi-

tion of random effects, Thompson (1979) anticipated the

generalised linear mixed model (Gianola & Foulley 1983; Har-

ville & Mee 1984). Unlike the linear mixed model, however,

the likelihood cannot be calculated analytically because the

random effects cannot be integrated out. Consequently, vari-

ous methods have been used for approximating the necessary

integrals including algebraic approximations such as Laplace

approximations (Harville & Mee 1984; Gilmour, Anderson &

Rae 1985; Schall 1991; Breslow & Clayton 1993; Breslow &

Lin 1995), numerical approximations such as deterministic

methods like (adaptive) Gaussian quadrature (Hinde 1982;

Anderson & Aitkin 1985; Liu & Pierce 1994) and stochastic

Monte Carlo methods such as Markov chain Monte Carlo

(MCMC) (Albert & Chib 1993) (see Breslow 2004, for a

review). These approximations have also been applied to situa-

tions where the random effects are correlated through a*Correspondence author. E-mail: j.hadfield@ed.ac.uk
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pedigree: Laplace approximations (Gilmour, Anderson &Rae

1985), Gaussian quadrature (Im&Gianola 1988) andMCMC

(Sorensen et al. 1995).

In a phylogenetic context, several types of (multivariate)

threshold model have been used. Felsenstein (2005) developed

a model of multiple binary traits where the underlying latent

variables evolved according to correlated Brownian motion,

and later extended this model to scenarios where the response

variables could be both binary and Gaussian (Felsenstein

2012). Ives & Garland (2010) developed a model for a single

binary response where the underlying latent variables evolved

according to an Ornstein–Uhlenbeck process (Hansen &Mar-

tins 1996). Hadfield (2010) & Hadfield & Nakagawa (2010)

developed a similar model to Felsenstein (2012) where the

response variables could come from various different distribu-

tions (including binary, Gaussian and (ordered) polychoto-

mous) but assumed that the underlying latent variables were

partly structured by correlated Brownian motion as in Felsen-

stein (2012), but could also be unstructured. The magnitude of

these structured phylogenetic effects and non-structured non-

phylogenetic effects was estimated, as in similar models devel-

oped for Gaussian traits (Lynch 1991; Pagel 1999). In these

models, the relative strength of these two processes is often

expressed as a phylogenetic heritability [Lynch (1991), also

known as Pagel’s k (Pagel 1999)], the proportion of the total

variance explained by the phylogenetic effects. Here, we show

that the models suggested by Felsenstein (2005) and Felsen-

stein (2012) are special cases of GLMM with the phylogenetic

heritability set to one.

In order to fit these models, various algorithms have been

used to integrate over the random effects in both Frequentist

[PQL: Ives & Garland (2010); Ho & Ane (2014), MCMC: Fel-

senstein (2005, 2012)] and Bayesian [MCMC: Hadfield (2010);

Hadfield & Nakagawa (2010); Revell (2014)] frameworks, but

here, we focus on MCMC algorithms. Felsenstein (2005) used

a single-site Gibbs sampler to update the phylogenetic effects

at internal nodes and importance sampling was used to update

the phylogenetic effects at the tips. In Felsenstein (2012),

importance sampling was replaced with Metropolis–Hastings

updates. Hadfield (2010) used a redundant parameterisation in

order to employ the blocked Gibbs sampler of Garcia-Cortes

& Sorensen (2001) for all phylogenetic effects at the tips, with

the option of Metropolis–Hasting updates or slice sampling

for the tip non-phylogenetic effects associatedwith non-Gauss-

ian traits. In this algorithm, the phylogenetic effects at internal

nodes were integrated out analytically which is computation-

ally very expensive when the problem is presented in this form

(Freckleton 2012). An alternative strategy was proposed where

the problem is expanded to include augmented random effects

associated with internal nodes (called the S�1, rather than the

A�1 parameterisation; Hadfield &Nakagawa 2010). Although

augmented and tip phylogenetic effects can be Gibbs-sampled

in a block, the S�1 parameterisation still has poorer mixing

properties compared to the A�1 parameterisation. However,

the CPU per iteration is dramatically decreased and in general

the S�1 parameterisation outperforms the A�1 parameterisa-

tion, except for the smallest phylogenies. For ordered

polychotomous traits, where thresholds have to be inferred,

Cowle’s (1996) Hastings-with-Gibbs joint update scheme was

employed. Revell (2014) used a sequential Metropolis–Has-

tings update for all parameters, including the thresholds for

models of ordered polychotomous traits.

Hadfield (2010) misunderstood the earlier work of Albert

& Chib (1993) who presented results implying that the lin-

ear mixed model can be applied to the truncated latent vari-

ables directly. Consequently, the blocked Gibbs sampler can

be applied without the need for a redundant parameterisa-

tion, and the non-phylogenetic effects at the tips are in stan-

dard form (truncated normal) and can be sampled

efficiently using the rejection algorithm of Robert (1995).

Here, we show that this result can be combined with work

on the reduced animal model from quantitative genetics

(Quaas & Pollak 1980) in order to develop an efficient

Gibbs sampler for phylogenetic models in which the phylo-

genetic heritability is set to one. Under these assumptions,

most GLMM software would run into numerical problems

as the distribution of the data tends to degeneracy, and the

algorithm proposed by Felsenstein (2005, 2012) neatly side-

steps this issue. We compare our related algorithm with

those proposed by Felsenstein (2012) and Revell (2014) for

a range of models and find substantial improvements in

speed and efficiency.

The thresholdmodel as aGLMM

The linearmixedmodel is formulated as:

l ¼ Xbþ Zuþ e eqn 1

where l are the data, b and X are the fixed effects and their

design matrix, u and Z are the random effects and their

design matrix, and e are the residuals. u and e are assigned

prior distributions which are usually multivariate normal

with zero mean and covariance matrix G and R, respectively.

In a Bayesian analysis, the fixed effects are also assigned a

prior. G and R are usually parameterised by a (small) set of

hyper-parameters, which in a Bayesian setting would be

assigned hyper-priors. Here, we will consider a simple phylo-

genetic model where G ¼ r2
aA and R ¼ r2

eI where A is the

phylogenetic relatedness matrix, and r2
a and r2

e are the

hyper-parameters (the phylogenetic and residual variances,

respectively).

After marginalising the random effects and residuals, the

marginal distribution of the data ismultivariate normal:

l�NðXb;r2
aZAZ

0 þ r2
eIÞ eqn 2

The threshold model assumes that some latent variable

has these properties and that values of l less than the

threshold c are associated with outcomes (y) being zero and

values of l greater than c are associated with outcomes

being one.

Evaluating the n-dimensional integral to find the probabil-

ity that l falls in some subspace that is compatible with the

observations would be difficult when the number of observa-

tions (n) is large. However, conditioning on the random
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effects, and because R is diagonal, the integration is easier

because only univariate cumulative distribution functions

have to be evaluated:

li �Nðxibþ ziu; riiÞ eqn 3

and so

PrðYi ¼ 1jX; b;Z; u;G;R; cÞ
¼

Z 1

ei ¼�1
Iðxibþ ziuþ ei [ cÞ

fNðei; 0; riiÞdei
¼

Z 1

ei ¼ c�ðxibþziuÞ
fNðei; 0; riiÞdei

¼ 1� FNðc� ðxibþ ziuÞ; 0; riiÞ
¼ FNð�cþ ðxibþ ziuÞ; 0; riiÞ
¼ FNðxibþ ziu; c; riiÞ

eqn 4

where fN is the normal density function and FN the normal

cumulative distribution function. The first line on the RHS is

the representation in terms of thresholds, and the final line is

the representation in terms of a glm with probit link (Nelder &

Wedderburn 1972). This equivalence is widely known and in

the Appendix S1 we give a graphical explanation. The deriva-

tion relies on the facts that

1� FNðg; c;r2Þ ¼ FNð�g;�c;r2Þ eqn 5

and

FNðg; c;r2Þ ¼ FNðgþ c; cþ c;r2Þ eqn 6

for any constant c . From the latter, it is clear that the distinc-

tion between threshold and latent variable is arbitrary, since

they are just reflections of each other:

FNðg; c;r2Þ ¼ FNðgþ ð�g� cÞ; cþ ð�g� cÞ;r2Þ
¼ FNð�c;�g;r2Þ

eqn 7

Also, because

FNðg; c;r2Þ ¼ FNðg
ffiffiffi
c

p
; c

ffiffiffi
c

p
;r2cÞ eqn 8

the scale of the latent variable is also arbitrary. By convention,

the scale is set in a GLMM framework with ‘standard’ probit

link by having rii ¼ 18i and the ‘threshold’ is set to zero

(c = 0) and essentially absorbed into the intercept of the latent

variable, b1. Alternative parameterisations exist and have

often been published as new models. For example, Curnow

(1972) developed a model in which the threshold was not

abrupt, but Bulmer (1985) showed its equivalence. Hazel,

Smock & Johnson (1990) developed the environmental thresh-

old model, where the linear predictor is split across the latent

variable and threshold, but Roff (1996) pointed out its equiva-

lence. More recently, Buoro, Gimenez & Prevost (2012)

presented the ‘latent’ environmental thresholdmodel which we

show in the Appendix S2 is a special case of the standard

GLMM. Some alternative parameterisations have been used

in full knowledge of their equivalence, but have been

used because of their algorithmic properties (e.g. Sorensen

et al. 1995).

The extension to ordered categorical data falling into k

(k > 2) categories is straightforward. If we denote c as a

vector of thresholds where c ¼ �1; 0; c3; c4; . . .ck;1½ �,
then:

PrðYi ¼ yijg;R; cÞ ¼ FNðcyiþ1;gi; riiÞ � FNðcyi ;gi; riiÞ
eqn 9

where y takes on values from 1 to k. In the binary case (where

Yi ¼ 2 if outcome i is a success), we can see that it is equiva-

lent:

PrðYi ¼ 2jg;R; cÞ ¼ FNðc3;gi; riiÞ � FNðc2;gi; riiÞ
¼ FNð1;gi; riiÞ � FNð0;gi; riiÞ
¼ 1� FNð0;gi; riiÞ
¼ FNð0;�gi; riiÞ
¼ FNðgi; 0; riiÞ

eqn 10

The reducedGLMMandphylogenies

Themarginal distribution of the random effect predictions is:

Zu�Nð0;r2
aZAZ

0Þ eqn 11

In some instances, we can find some eZ and eA such that:

r2
aZAZ

0 ¼ r2
a
eZ eA eZ0 þ r2

aD eqn 12

where D is diagonal and (hopefully) eZ and/or eA�1 are smal-

ler, sparser and less complex than Z and A�1 (Quaas & Pollak

1980; Lynch & Walsh 1998). We can therefore calculate the

probability of l, conditional on eu by evaluating the univariate

cdf’s:

li �Nðxibþ ezieu; rii þ r2
adiiÞ eqn 13

and

PrðYi ¼ 1jX; b; eZ; eu;G;R;DÞ ¼ FNðxibþ ezieu; c; rii þ r2
adiiÞ

eqn 14

We could evaluate eqn 14 by evaluating the linear predictoregi ¼ xibþ ezieu in a datum-specific cumulative distribution

function with r2
~ei
¼ rii þ r2

adii or we could rescale each egi byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rii þ r2

adii
p

and evaluate using the standard inverse probit

function. The method generalises to multiple categories, and

under these situations, the thresholds must also be scaled if the

second option is taken.

For a REML animal model with Gaussian data, Quaas &

Pollak (1980) derived a useful set of reduced mixed model

equations where columns of eZ index the parent(s) of individu-

als that have no offspring, or the individuals themselves if they

do have offspring. For individuals with offspring dii ¼ 0, but

for individuals without offspring dii is proportional to the

Mendelian sampling variation, the variation due to segregation

and recombination that is independent of parental breeding

values. dii take on values 0�5ðddi þ dsi � fdi � fsi ) where ddi is
one if the dam of individual i is not known and zero otherwise,

and fdi is the inbreeding coefficient of individual i’s dam. Terms

subscripted with s denote sires. eA is then the additive genetic

relationship matrix of individuals that have at least one

© 2015 The Author. Methods in Ecology and Evolution © 2015 British Ecological Society, Methods in Ecology and Evolution, 6, 706–714
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Balanced tree
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Pectinate tree
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n5

n6

n7

Fig. 1. Perfectly balanced (left) and perfectly

pectinate (right) trees with interior nodes and

tips labelled. The model equations for these

trees are given in eqns 15 and 16, respectively.

offspring and can be inverted using standard techniques (Hen-

derson 1976; Quaas 1976;Meuwissen&Luo 1992).

Here, we show that a similar decomposition can be

obtained for phylogenies, where columns of eZ index the

interior nodes immediately ancestral to the tips, and eA is

the phylogenetic relatedness matrix between the immediate

ancestral species. dii are the branch lengths from the tips to

the immediate ancestral species. Generally, eA has a dense

inverse that must be solved directly. However, as in pedigree

analysis, phantom parents (all remaining internal nodes) can

be included in the analysis so that the inverse is sparse with

simple structure. Following Hadfield & Nakagawa (2010),

we will denote this augmented phylogenetic relatedness

matrix as eS. It is worth noting that eS is of dimension n�2,

whereas S is of dimension 2n�2. In addition, whereas S

always requires augmenting with n�2 phantom parents, the

degree of augmentation under the eS parameterisation varies

with tree topology: with perfectly balanced trees (n�4)/2

phantom parents are required, but with perfectly pectinate

trees augmentation can be dispensed with. The reduced

parameterisation is therefore likely to be particularly efficient

for unbalanced trees.

In order to illustrate these properties of the reduced parame-

terisation, eqn 15 describes the model for a perfectly balanced

tree and eqn 16 describes the model for a perfectly pectinate

tree. The trees are represented in Fig. 1.

lt1
lt2
lt3
lt4
lt5
lt6
lt7
lt8

2
66666666664

3
77777777775
¼

1
1
1
1
1
1
1
1

2
66666666664

3
77777777775
ln1 þ

1 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 1 0 0

2
66666666664

3
77777777775

ln3 � ln1
ln4 � ln1
ln6 � ln1
ln7 � ln1
ln2 � ln1
ln5 � ln1

2
6666664

3
7777775
þ

~et1
~et2
~et3
~et4
~et5
~et6
~et7
~et8

2
66666666664

3
77777777775

eqn 15

lt1
lt2
lt3
lt4
lt5
lt6
lt7
lt8

2
66666666664

3
77777777775
¼

1
1
1
1
1
1
1
1

2
6666666666664

3
7777777777775
ln1 þ

0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 1

2
66666666664

3
77777777775

ln2 � ln1
ln3 � ln1
ln4 � ln1
ln5 � ln1
ln6 � ln1
ln7 � ln1

2
6666664

3
7777775
þ

~et1
~et2
~et3
~et4
~et5
~et6
~et7
~et8

2
66666666664

3
77777777775

eqn 16

The first incidence matrix (the column of ones) is the fixed

effect design matrix X, and the second incidence matrix is the

random effect design matrix ~Z. In both cases, all latent vari-

ables (lt1 . . .lt8 and ln1 . . .ln8 ) can be formed from combinations

of the fixed effect (ln1 ), the random effects (~u: the vector after
~Z) and the residuals (~e). However, with the balanced tree,

ln2 � ln1 and ln5 � ln1 are included as augmented random effects

and the final two columns of ~Z are null. The augmented effects

are separated from the non-augmented effects by a solid verti-

cal line, and it should be noted that in previous versions of

MCMCglmm (≤2�21), the response vector also had to be aug-

mented because null-column sparse matrices were not

handled.

In quantitative genetics,r2
a is estimated andr2

e set to one. In

a phylogenetic context, Felsenstein (2005, 2012) assumed

r2
a ¼ 1 andr2

e ¼ 0 which would give:

PrðYi ¼ 1Þ ¼ FNðxibþ ezieu; c; diiÞ eqn 17

Because in a phylogenetic context dii [ 08i, we can formu-

late the model as a reduced phylogenetic model and allow r2
e

to be set to zero. In most other applications, dii ¼ 0 for some i,

which would result in eqn 14 being degenerate if r2
e was set to

zero. Felsenstein (2012) expressed concern that the GLMM

analogue of eqn 17 (i.e. eqn 14) did not have a transfer func-

tion that was a step. However, with r2
e ¼ 1 and r2

a becoming

large, we can see that

© 2015 The Author. Methods in Ecology and Evolution © 2015 British Ecological Society, Methods in Ecology and Evolution, 6, 706–714
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PrðYi ¼ 1Þ ¼ FNðxibþ ezieu; 0; 1þ r2
adiiÞ

¼ FNððxibþ ezieuÞ=ra; 0; ð1þ r2
adiiÞ=r2

aÞ
¼ lim

r2
a!1

FNððxibþ ezieuÞ=ra; 0; diiÞ

eqn 18

Dividing fixed and random effects by ra is used to obtain

transformed location effects on some alternative (and non-

identifiable) scale (e.g. Hadfield 2009): in this case a scale in

which ra ¼ ra þ re ¼ 1. The model of Felsenstein (2012) is

therefore a special case of a phylogenetic GLMM with

h2 ¼ 1. However, it should be emphasised that most applica-

tions of GLMM would break as ra becomes large and the

probit function under/overflows. Felsenstein’s (2012) method

neatly sidesteps this issue when it can be assumed that h2 ¼ 1,

as does the closely related reduced mixed model formulation

presented here.

MCMCalgorithm for the (multivariate) reduced
phylogenetic GLMM

In the univariate categorical model with h2 ¼ 1, the only

parameters are the fixed intercept b and the random phylo-

genetic effects (the ancestral states ~u and the tip + phantom

parent states l). Conditional on l, b and ~u can be Gibbs-sam-

pled in a block using the algorithm of Garcia-Cortes &

Sorensen (2001). Conditional on b and ~u, l can be sampled

from independent truncated normals with variances propor-

tional to the diagonal elements of D. Robert (1995) describes

an efficient rejection algorithm for sampling from a trun-

cated normal.

In the univariate Gaussian model with h2 ¼ 1, b and ~u can

be Gibbs-sampled in a block as in the binary case, but the tip

states are observed and do not need to be updated. However,

unlike the binary case, the scale is identifiable and does need to

be estimated. Noting that

u ¼ ~u
l � xb

� �
�Nð0;r2

aSÞ eqn 19

the posterior distribution of r2
a is inverse-Wishart (with a con-

jugate inverse-Wishart prior) and can be Gibbs-sampled

(Sorensen & Gianola 2002). With 0 prior degrees of freedom,

the posterior degrees of freedom is m = 2(n�1) and the scale

matrixΨ is:

~u
l� Xb

� �
S�1 ~u

l� Xb

� �>
eqn 20

An alternative but equivalent parameterisation which has

an easier implementation is:

~u
l� ~Z~u� Xb

� �
�N 0;r2

að~S�DÞ� �
eqn 21

where ⊕ is the direct sum. This is preferable because

ð~S�DÞ�1 ¼ ~S�1 �D�1 such that the inverse is easier to

obtain than S�1 and is sparser with simpler structure.

Extending the reduced mixed model to models where

h2\1 is less straightforward. In standard GLMMs, the

(co)variance components can be Gibbs-sampled if their

only constraint is non-negative definiteness. However, the

conditional distribution of the variance components in the

reduced mixed model is in non-standard form because the

reduced ‘residuals’ (~e) are a mixture distribution of residual

(e) and phylogenetic effects. In this case, the variance com-

ponent(s) would have to be updated by some alternative

method (Bink et al. 1998).

For multivariate models, the tip states for categorical

traits can be Gibbs-sampled conditional on the remaining

tip states for that species. For example, if we subscript

terms by 1 and 2 to differentiate between the two traits of

a bivariate analysis, then the latent variable for trait 2 in

species i can be updated conditional on the current value

of trait 1 for that species:

Prðl2ijl=2i; ~Z; ~u;X; b; d; rÞ
¼ fTNðl2ijX2b2 þ ~Z2~u2

þ rðl1i � X1b1 � ~Z1~u1Þ;
dii � r2d2ii; cy2i ; cy2iþ1Þ

eqn 22

where the subscript /i denotes a vector with element i omitted.

In the multivariate model (following the second parameteri-

sation in the univariate section),

~u1
l1 � ~Z1~u1 � X1b1

~u2
l2 � ~Z2~u2 � X2b2

2
664

3
775�N 0;V� ð~S�DÞ� �

eqn 23

where V is the phylogenetic effect covariance matrix. When

both traits are Gaussian, V is unconstrained and we can sam-

ple directly from the inverse-Wishart as in the univariate case.

When both traits are categorical, the scale for each trait (the

diagonal elements of V) is not identifiable and can be con-

strained to one. The resulting correlation matrix can be

updated using methods outlined in Liu & Daniels (2006). If

there is a single categorical trait and multiple non-categorical

traits, then a single diagonal element of V should be con-

strained at one, which can be achieved using the method of

Korsgaard, Andersen & Sorensen (1999). These updating

schemes were available in MCMCglmm v1.00 (2009) and

v2.02 (2010), respectively. Additional categorical traits could

be included in the analysis although the correlation between

them would have to be constrained to zero under versions

<2.20. Here, we present a hybrid algorithm to overcome this

restriction, by updating the correlation submatrix using meth-

ods outlined in Liu &Daniels 2006 and then conditioning on it

while updating the remaining components using a modified

version of the method presented in Korsgaard, Andersen &

Sorensen (1999). For example, if we divide the traits into two

categories where category 1 contains ≥1 non-categorical trait

and category 2 contains ≥2 categorical traits, then:

Pr
V11 V11

V12 V22

� �
j W11 W11

W12 W22

� �
; m

� �
¼ PrðV22jW; mÞPrðV11;V12jV22;W; mÞ

eqn 24

© 2015 The Author. Methods in Ecology and Evolution © 2015 British Ecological Society, Methods in Ecology and Evolution, 6, 706–714
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From Korsgaard, Andersen & Sorensen (1999) and refer-

ences therein, V22 can be drawn directly from its marginal dis-

tribution V22 � IWðW22; m� d1Þ where d1 is the dimension of

V11 and the inverse-Wishart is parameterised in terms of the

scale matrix, rather than its inverse R ¼ W�1 as in Korsgaard,

Andersen & Sorensen (1999). However, in this example, the

diagonal elements of V22 are not identifiable in the likelihood

and soV22 is constrained to be a correlationmatrix which does

not have a standard distribution. However, assuming the iden-

tity prior specification in Barnard, McCulloch &Meng (2000),

we use the method of Liu &Daniels (2006) with m� d1 degrees

of freedom. m ¼ mp þ 2n� 2 under the parameterisation given

in eqn 19, but may be less under the parameterisation given in

eqn 21 depending on tree topology. mp is the prior degrees of

freedom and under the identity prior (Barnard, McCulloch &

Meng 2000) controls the degree to which V22 is shrunk to an

identity matrix. Korsgaard, Andersen & Sorensen (1999) pro-

vide a strategy to sample from PrðV11;V12jV22;W; mÞ when

V22 ¼ I although their result generalises directly to cases where

V22 6¼ I since 10.4.3 from Hoffman-Jorgensen (1994) holds

generally. Consequently, T1 and T2 [defined in Korsgaard,

Andersen & Sorensen (1999)] can be sampled and T3 set to

ðV22Þ�1 (Korsgaard, Andersen & Sorensen 1999). Substituting

into the first equation on p180 of Korsgaard, Andersen &

Sorensen (1999) draws V from the required distribution. Note

that there is a small typological error in Korsgaard, Andersen

& Sorensen (1999): the T>
3 in the upper right submatrix of the

first equation on p180 should beT�>
3 .We use the notationA�1

11

and ðA11Þ�1 to differentiate between a submatrix of the inverse

ofA and the inverse of a submatrix ofA.

Comparisonwith otherMCMCalgorithms

We tested our algorithm against those proposed in Revell

(2014) and implemented in the R package phytools (Revell

2012) using three models: a) the ancestral states in a univariate

binarymodel, b) the parameters of a bivariate binaryGaussian

model (the two intercepts, theGaussian variance and the corre-

lation) and c) the threshold in a 3-category ordinal model. In

each case, we sampled 500 random tips from the recently pub-

lished complete avian phylogeny (Jetz et al. 2012) and then

simulated trait values with b = 0 and r2
a ¼ 1. In the bivariate

analysis (b), we used two schemes where the phylogenetic cor-

relation was either set to zero or 0�5. In the ordinal model, the

non-constrained threshold (c3) was set to one. In order to

gauge the efficiency of the algorithms, we calculated the

MCMCeffective sample size per iteration, either averaged over

ancestral states (a) or for the phylogenetic correlation (b) or

the threshold (c). In addition, we calculated the amount of time

taken to complete one iteration (defined as a complete update

of all parameters). All models were fitted for 13 000 iterations

with 3000 iterations as burn-in using the algorithm presented

here (referred to asMCMCglmm) and that proposed in Revell

(2014) (referred to as phytools). The code to perform the analy-

ses can be found in Appendix S3. The full results are presented

in Table 1 and show that MCMCglmm is between ten thou-

sand and 1 million times more efficient than phytools,

depending on the model and parameters assessed. In order to

visualise the bettermixing properties of theMCMCglmmalgo-

rithm, we also plot traces of the MCMC chain for model b)

with a true phylogenetic correlation of 0�5 (Fig. 2).
The algorithm developed by Felsenstein (2012) and imple-

mented in phylip (Felsenstein 1989) usesMCMC to obtain the

likelihood, rather than as a technique to sample from the com-

plete posterior distribution of the model. However, under

model b) (model a) is not implemented in phylip) the MCMC

algorithm is sampling from the posterior distribution of latent

variables conditional on the covariance matrix of the current

iteration. Consequently, we fixed the covariance matrix at its

true value (with phylogenetic correlation equal to 0�5) in both

MCMCglmm and phylip and compared the latent variables

for the categorical trait in the samemanner as was done for the

phytools/MCMCglmm comparison in model a) above. Modi-

fied phylip code for writing the latent variables to file is avail-

able from the author. MCMCglmm collects 5�2 more effective

samples per iteration than phylip but iterates 2�38 times slower

resulting in comparable speeds: MCMCglmm collects 2�18
more effective samples perminute.

In order to gauge how much tree shape influences the speed

and efficiency of our algorithm, we also simulated balanced

and pectinate trees (with 512 tips) using the stree function from

the R package ape (Paradis, Claude & Strimmer 2004) and ran

model a). The efficiency of our algorithm depends on tree

shape with the algorithm collecting 23 more effective samples

per iteration for pectinate trees than equivalent sized balanced

trees but iterating at an equivalent speed (1�05 times faster).

Discussion

In this paper, we show that the original phylogenetic threshold

model (Felsenstein 2005) is equivalent to a GLMM with the

phylogenetic ‘heritability’ set to one. We go on to develop an

MCMC algorithm based on the reduced animal model from

quantitative genetics that is robust under this restriction. The

new algorithm can collect adequate effective samples (�1000)

Table 1 . Profiling statistics for (a) a univariate binary model, (b) a

bivariate binary Gaussian model and (c) a three-category ordinal

model fitted with differentMCMC software. The statistics are the effec-

tive sample size (ESS), the time (in minutes) per iteration (Time) and

the number of effective samples per minute. The ESS statistics are a)

the average for ancestral states, (b) for the phylogenetic correlation and

(c) for the threshold

Model a

Model

b (r = 0)
Model

b (r = 0�5) Model c

Phytools

ESS 282�25 281�78 192�7 17�32
Time (min) 9970 3665 3684 9982

ESS/Time 0�02831 0�07689 0�05231 0�00174
MCMCglmm

ESS 2360�96 669�53 418�46 334�13
Time (min) 0�1551 1�0593 1�0476 0�168
ESS/Time 15217�3 632�1 399�4 1988�7

© 2015 The Author. Methods in Ecology and Evolution © 2015 British Ecological Society, Methods in Ecology and Evolution, 6, 706–714
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from the posterior distribution in approximately aminute for a

500 tip phylogeny for a variety of threshold models. In con-

trast, the only published alternative, the naive sampler devel-

oped by Revell (2014) may require weeks or even years

depending on the model. In part, this could have been

improved upon by single-site Gibbs sampling of the latent vari-

ables at interior nodes, as suggested by Felsenstein (2005). For

sampling latent variables, the algorithms in Felsenstein (2005,

2012) are comparable in speed to those developed here where

the reduced efficiency per iteration is balanced by the increase

in speed per iteration.

The algorithm presented byRevell (2014) shows particularly

slowmixing for the three-category ordinalmodel. TheMetrop-

olis–Hastings updates for the threshold could be replaced by a

Gibbs sampling step, since their conditional distribution is sim-

ply uniform between the maximum and minimum latent vari-

ables associated with data in adjacent categories (Albert &

Chib 1993). However, Cowles (1996) showed that conditional

updates of the thresholds followed by the latent variables result

in very poormixing because the interval between the minimum

and maximum latent variables from the previous iteration is

likely to be very narrow, especially when there are many obser-

vations. To alleviate this problem, Cowles (1996) proposed a

clever Hastings-with-Gibbs joint update that was implemented

inHadfield (2010) and here. Nandram&Chen (1996) extended

this idea and demonstrated that the Hastings step could be

omitted for three-category problems, and for >3-category
problems, Dirichlet proposal densities outperform the trun-

cated normal proposal densities of Cowles (1996). Similarly,

Sorensen et al. (1995) showed that Gibbs sampling for a three-

category problem is possible by fixing all thresholds and esti-

mating r2
e . We did not pursue these extensions since the cur-

rent implementation has adequatemixing properties.

Odegard et al. (2010) presented a Gibbs sampling scheme

for binary data collected on a pedigree. The central idea is

that because the Mendelian sampling effect is confounded

with the residual for individuals without offspring, then it is

also not identifiable. Consequently, the conditional distribu-

tion of the additive genetic variance on parental breeding val-

ues is equivalent to the distribution after marginalising

offspring breeding values. They therefore use the standard

(non-reduced) mixed model equations but only use the paren-

tal random effects to update variance components. This result

was a motivating factor behind the algorithms developed in

this paper, despite the result not being applicable to models

where the heritability is set to one, as here. Nevertheless, the

result is likely to prove useful for the more general phyloge-

netic model where the heritability is estimated.

Most of the ideas presented in this paper are straightfor-

ward extensions to a large body of work that has accumulated

in statistics and quantitative genetics. We would like to reiter-

ate that many phylogenetic comparative models are special

cases of this broader work and that understanding and utilis-

ing known results from these fields may prove as fruitful as

developing algorithms de novo (Ives & Zhu 2006; Hadfield &

Nakagawa 2010). An exception to this is the class of Markov

models initiated by Pagel (1994) which are fundamentally dif-

ferent from the generalised linear mixed models employed by

quantitative geneticists. For some traits, the Markov model is

probably a more realistic model of how discrete traits evolve

(e.g. states that conform to Dollo’s law (Goldberg & Igi�c

2008), but for others a threshold model is probably more real-

istic (See the arguments put forward in Felsenstein 2005; Had-

field & Nakagawa 2010; Revell 2012). The common practice

of discretising a continuous trait in order to model the evolu-

tion of the resulting states (e.g. Fitzpatrick et al. 2009) is an

extreme and clear example of character evolution that would

not conform to a Markov model; Pearson (1900) actually

used the discretisation of human heights to explain the con-

cept of the threshold model. However, given the Markov

model’s ability to say something about the temporal order of

evolutionary events, and the direction of causality, such
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Fig. 2. Traces ofMarkov chain output for the binaryGaussianmodel from phytools (red) andMCMCglmm (black).
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practices are likely to persist. Consequently, a better under-

standing of the relationship between Markov models and

threshold models, and the development of models that con-

tain aspects of both would be a very welcome addition to the

literature on the evolution of discrete characters.
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