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Introduction

The work of Fisher, Haldane and Wright not only

established the field of quantitative genetics but

made substantial contributions to the field of statistics

(Falconer, 1983). These statistical tools are still routinely

used in comparative biology, although with a few notable

exceptions (Lynch, 1991; Felsenstein, 2005; Naya et al.,

2006) the connection with quantitative genetics seems to

have been largely lost. In this paper, we aim to reconnect

quantitative genetics with comparative biology via the

mixed model, highlighting solutions developed in quan-

titative genetics for problems that appear not to have

been addressed or resolved in comparative biology.

Although used across the sciences, mixed models have

their origin in quantitative genetics where a large and

sophisticated, but perhaps inaccessible literature exists

(Lynch & Walsh, 1998; Sorensen & Gianola, 2002;

Thompson, 2008). Given their origin, it is perhaps not

surprising that an early application of mixed models was

to the analysis of data collected on individuals linked

through a pedigree – an analysis now known as the

‘animal model’ (Henderson, 1976). In an important

paper, Lynch (1991) showed that this same model can

be applied to problems in phylogenetic comparative

biology despite the difference in timescales over which

shared ancestry is measured. Although Lynch’s (1991)

paper had received little attention until relatively
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Abstract

Although many of the statistical techniques used in comparative biology were

originally developed in quantitative genetics, subsequent development of

comparative techniques has progressed in relative isolation. Consequently,

many of the new and planned developments in comparative analysis already

have well-tested solutions in quantitative genetics. In this paper, we take three

recent publications that develop phylogenetic meta-analysis, either implicitly

or explicitly, and show how they can be considered as quantitative genetic

models. We highlight some of the difficulties with the proposed solutions, and

demonstrate that standard quantitative genetic theory and software offer

solutions. We also show how results from Bayesian quantitative genetics can

be used to create efficient Markov chain Monte Carlo algorithms for

phylogenetic mixed models, thereby extending their generality to non-

Gaussian data. Of particular utility is the development of multinomial models

for analysing the evolution of discrete traits, and the development of multi-

trait models in which traits can follow different distributions. Meta-analyses

often include a nonrandom collection of species for which the full phyloge-

netic tree has only been partly resolved. Using missing data theory, we show

how the presented models can be used to correct for nonrandom sampling and

show how taxonomies and phylogenies can be combined to give a flexible

framework with which to model dependence.
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recently (Housworth et al., 2004; Felsenstein, 2008), an

equivalent model (Pagel, 1999) was developed indepen-

dently in the intervening period (Housworth et al., 2004).

A perceived difficulty of Lynch’s (1991) original

phylogenetic mixed model was that finding the

maximum likelihood (ML) estimate was too computer

intensive to make it a practical tool (e.g Martins, 1996;

Diniz-Filho et al., 1998). However, a great deal of

quantitative genetic literature had accumulated for effi-

ciently fitting a range of large complex models (for a

review, see Thompson et al., 2005) and by at least 1996

this theory had a general implementation in the program

ASReml (Gilmour et al., 2002). For many data sets,

Lynch’s (1991) model could have been fitted in a matter

of seconds using restricted maximum likelihood (REML),

which became the method of choice in quantitative

genetics relatively early (Patterson & Thompson, 1971).

By contrast, the ML and generalized least squares (GLS)

procedures advocated by Lynch (1991) and Pagel (1999)

have largely been superseded in quantitative genetics

due to their inherent bias and inflexibility. This bias

arises because the methods fail to take into account the

uncertainty in the fixed effects, resulting in downwardly

biased variance components. The bias is likely to be

severe in the context of phylogenetic comparative anal-

yses because the fixed effects are associated with the

ancestral state, and the ancestral state usually has high

sampling error.

In this paper we start by showing that the relationship

between the animal model and the phylogenetic mixed

model is deeper than had been noted. The original

phylogenetic mixed model was derived by making the

analogy between the matrix of phylogenetic distances

and the relatedness matrix defined by a pedigree.

However, by expanding the phylogenetic covariance

matrix to include ancestral nodes we show that these

matrices also share several structural properties. More

specifically, we show that a phylogeny is mathematically

equivalent to an inbred pedigree, where the inbreeding

coefficients are equal to the branch lengths. This rela-

tionship can be exploited in order to develop algorithms

that are more accurate and orders of magnitude faster for

large problems.

We go on to emphasize that general solutions and

software are already available for dealing with many

aspects of comparative analysis for which comparative

biologists often flag as future avenues of research. We

illustrate this by taking three recently published com-

parative papers (Ives et al., 2007; Adams, 2008; Felsen-

stein, 2008) and show that they can all be considered

phylogenetic meta-analyses in a mixed model frame-

work. By doing this we highlight that the original

phylogenetic meta-analysis (Adams, 2008) is imple-

mented incorrectly, and that REML estimates could have

been obtained for all three models over a decade ago

without the need to develop new statistical tools or

software. As a worked example, we re-analyse data

collected by Adams (2008) in order to test Bergmann’s

(1847) rule – an ecological rule predicting a positive

intraspecific correlation between body size and latitude.

We go on to discuss mixed model procedures for

dealing with imperfect data in the context of comparative

biology. In particular, the problem of missing data has

received a great deal of attention in quantitative genetics

and general methods that correct for nonrandom sam-

pling are available and well understood (e.g Im et al.,

1989; Hadfield, 2008). These results are particularly

important in the context of meta-analysis and compar-

ative analysis because they may be able to correct for the

publication bias that arises through nonrandom sampling

of taxa, for example when common or ‘fluffy’ species

are over-represented (Fisher et al., 2003; Nakagawa &

Freckleton, 2008). In a similar vein, the availability of a

complete phylogeny may not be available for all taxa,

and we show how taxonomic models (Clutton-Brock &

Harvey, 1977) and phylogenetic models can be combined

relatively simply using standard methodology. Although

not an ideal solution, the method does provide a flexible

work-around for analysing data where phylogenetic

information is currently incomplete.

We end by discussing phylogenetic generalized linear

mixed models for non-Gaussian traits, as standard

REML methods are known to be unreliable due to the

intractability of the likelihood. Markov chain Monte

Carlo (MCMC) methods have proved to be useful tools

for solving this problem both in quantitative genetics

(Sorensen & Gianola, 2002) and phylogenetics (Pagel

et al., 2004; Felsenstein, 2005) and we show how

efficient Gibbs samplers from quantitative genetics can

be directly used for a wide range of phylogenetic

methods. In particular, we discuss in detail a model

where the trait can be one of J > 2 nominal states, as

this type of model does not appear to have been used in

quantitative genetics or comparative biology. The model

allows the analysis of continuous and discrete characters

to be brought under the same framework by shifting

emphasis from evolutionary jumps between states to

continuous evolution of the probability for expressing a

state. In the context of phenotypic evolution, the

proposed model seems to have an easier biological

interpretation than currently available alternatives

derived from substitution models of DNA (e.g. Pagel,

1994) because it allows for the fact that a whole host of

developmental pathways are often required for the

expression of complex categorical phenotypes. For

example, a flightless stick insect is inherently more

likely to produce a flying descendant than a flightless

rodent.

Phylogenetic covariance matrix vs. the
additive relationship matrix

We give a brief description of the phylogenetic covari-

ance matrix and the additive genetic relationship matrix
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because it was the link between these two concepts that

allowed Lynch (1991) to develop the phylogenetic mixed

model. We then show that if the phylogenetic covariance

matrix is expanded to include ancestral species then

these matrices are also similar in form. This may seem

like a technical aside (the technical details are left to the

Appendix), but we include it for two reasons. First, it

makes the link between the phylogenetic mixed model

and the animal model more explicit. Second, the struc-

tural properties of the additive genetic relationship

matrix have played a key role in the development of

robust and efficient algorithms in quantitative genetics.

As phylogenetic comparative analyses become larger in

scale, it will be useful and perhaps even necessary to

exploit these properties.

The additive genetic relatedness matrix (A) is a square

matrix equal in dimension to the number of individuals

in the pedigree. Element Aij is twice the probability that

two alleles drawn at random, one from individual i and

the other from individual j, are identical by descent. In

the absence of inbreeding this is equivalent to the

expected proportion of genes shared by two individuals

(i.e. 1 if i ¼ j, 0.5 if i and j are parent and offspring, 0.5 if

full-sibs, 0.25 if half-sibs and so on).

In a phylogenetic context the equivalent matrix is

equal in dimension to the number of species at the tips of

the phylogeny. In this case the elements Aij are equal to

the length of the path from the most recent common

ancestor of species i and j to the root of the phylogeny.

Generally, the length of the path from the tips to the root

of the phylogeny is scaled to unity so that the matrix is

the correlation matrix with all the diagonal elements

being 1.

However, in most statistical applications it is not A

that is required, but its inverse A)1. For pedigrees this

matrix can be very large and efficient ways of obtain-

ing the inverse made the fitting of these models

practical (Henderson, 1976; Quaas, 1976; Meuwissen

& Luo, 1992). These algorithms usually start by

inserting ‘phantom parents’ into the pedigree so that

all individuals can be traced back to a set of unrelated

parents. By analogy, we can extend the concept of the

phylogenetic covariance matrix to include all ancestral

nodes:

S ¼ F B

B0 A

� �
ð1Þ

where F is a square matrix of dimension n ) 2 (the

number of internal nodes, excluding the root, where n is

the number of tips). In the Appendix, we show why S

has the same form as the complete pedigree matrix A,

which allows us to apply Henderson’s (1976) results

directly to the problem of inverting S (i.e. S)1). This

equivalence of form is due to the fact that a phylogeny

has the same graph structure as a pedigree without

fathers, and the branch lengths between parent and child

nodes are equivalent to inbreeding coefficients.

In later sections we will often use models parametrized

in terms of A)1 rather than S)1 so that the connection

with earlier work on comparative analysis is clearer.

However, we emphasize that it is usually better to work

with the S)1 parametrization, even though this involves

including n ) 2 missing records. There are three reasons

for this. First, S)1 can be formed without the need to use

direct inversion techniques such as Gauss–Jordan elim-

ination. A has to be inverted this way which will be slow

for large phylogenies, and may suffer from numerical

problems as the matrix becomes ill conditioned, which is

more likely with phylogenies than pedigrees as the

variation in eigenvalues is generally higher (Housworth

et al., 2004). Second, S)1 has reduced storage require-

ments because the number of nonzero elements is linear

in n (i.e. 6(n ) 1)) and the matrix is said to be ‘sparse’. By

contrast, A)1 is dense with the number of nonzero

elements nonlinear in n (i.e. n2). Last and most impor-

tantly, the pattern of zeros in S)1 allows GLS/mixed

model equations to be re-ordered in such a way that the

number of arithmetic operations needed to solve them is

drastically reduced (for an introduction to sparse matrix

methods, see Davis, 2006).

In Appendix S1, we simulate phenotypic data for the

recently published mammal super-tree of 4510 species

(Bininda-Emonds et al., 2007) and show that depending

on the method used, fitting a model with the A)1

parametrization either fails completely or takes up to a

month of computing time. By contrast, the S)1 method

takes between 0.2 s and 8 min depending on the method

used.

Phylogenetic meta-analysis

Using A to represent the phylogenetic relatedness matrix,

we show that several recent comparative papers are

variations of a common theme – phylogenetic meta-

analysis. However, our main point is that this model is

also a relatively minor variation of the basic mixed

model, for which software has been available for some

time.

We consider the simplest, but sufficiently general

phylogenetic meta-analysis where the study test statistic

(y) for study i has the form:

yi ¼ lþ ai þ ei þmi ð2Þ

where l is the intercept (the ancestral state of the root

node under a Brownian model), a are phylogenetic

effects, e are residuals and m are study-specific measure-

ment errors. The random effects are assumed to follow

normal distributions:

a � Nð0; r2
aAÞ

e � Nð0; r2
e IÞ

ð3Þ

where r2
e is the residual variance and r2

a is the phyloge-

netic variance. The identity matrix I represents the
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assumption that the residuals are independent and

identically distributed. r2
e and r2

a are generally unknown

and must be estimated; however, the distribution of m

are often assumed to be known, and can usually be

represented by a diagonal matrix M, where each diagonal

element is the sampling variance of the published test

statistic (often assumed to be the square of the standard

error):

m � Nð0; r2
mMÞ ð4Þ

where for generality we include the measurement error

variance r2
m, although this is set to one when the

sampling variances are known. In meta-analysis, it is

common to talk about weighting, and the weight matrix

(W) is equal to the inverse of M.

The (co)variance structure of the data V is therefore of

the form:

V ¼ r2
aAþ r2

e Iþ r2
mM ð5Þ

In GLS, an estimate of the fixed effects (l̂) is obtained

using:

l̂ ¼ ðX0V�1XÞ�1X0V�1y ð6Þ
where X is the fixed effects design matrix (in this case an

n · 1 vector of ones). V)1 is assumed to be known, up to

proportionality, and when this is satisfied l̂ is equivalent

to the best linear unbiased estimate (BLUE) of l in a

REML analysis.

The method of Adams (2008)

Garland & Ives (2000) in their non-meta-analytic

approach assume that M ¼ 0, naturally, but also assume

no residual error (i.e. r2
e ¼ 0). Under these assumptions,

A)1 and V)1 are proportional because V�1 ¼ ð1=r2
aÞA�1.

Because of these assumptions Garland & Ives (2000) are

able to project X and y using the matrix W which allows

an ordinary least squares parametrization of the model.

This is possible because W is defined as the non-

normalized eigenvectors of A)1, and has the property

W¢AW ¼ I and so A ¼ (W¢))1W)1 ¼ (WW¢))1, giving:

l̂ ¼ ððW0XÞ0W0XÞ�1ðW0XÞ0W0y
¼ ðX0WW0XÞ�1

X0WW0y

¼ ðX0A�1XÞ�1
X0A�1y

ð7Þ

which is equivalent to eqn 6 only because A)1�V)1. This

relationship can only be satisfied when there are no

additional sources of random variation. This may be

unrealistic, and particularly so in the context of meta-

analysis where the aim is to take into account the

variation in the precision of study-specific estimates,

using weighted statistical models.

Even if r2
e ¼ 0 then the expected (co)variances under

a phylogenetic meta-analytic model would have the form

V ¼ Ar2
a þ r2

mW�1 and V cannot be decomposed unless

r2
a and r2

m are known. Adams (2008), equation 6)

proposes the GLS estimator:

l̂ ¼ ððW0XÞ0WW0XÞ�1ðW0XÞ0WW0y

¼ ðX0WWW0XÞ�1
X0WWW0y

ð8Þ

which implies that ðAr2
a þ r2

mW�1Þ�1 / WWW0. How-

ever, if this is the case then:

ðAr2
a þ r2

mW�1Þ�1 ¼ cWWW0

W�1 ¼ cðIr2
a þ r2

mW0W�1WÞ
ð9Þ

where c is some constant (for the full derivation, see

Appendix). As W)1 is a diagonal matrix, eqn 9 can only

hold if W)1 can be diagonalized by W, implying (amongst

other things) that the taxa are unrelated. Clearly, such a

technique is not useful in a phylogenetic context.

The method of Ives et al. (2007)

Ives et al. (2007) derive an analogous model which is

correct when r2
e ¼ 0 and so the data have the expected

variance structure:

V ¼ r2
aAþM ð10Þ

where M is assumed known. Ives et al. (2007) did not

explicitly mention the connection with meta-analysis, as

M for them represents the precision of species mean

estimates rather than the precision of some arbitrary

effect size statistic, but eqn 10 shows the models to be

analogous to meta-analysis. Ives et al. (2007) give ML,

REML and estimated GLS (EGLS) procedures that

estimate r2
a to give estimates of l. Ives et al. (2007) also

consider the problem of the measurement error variance

r2
m for those cases where it is unknown but did not

provide a strategy for estimating r2
m.

The method of Felsenstein (2008)

Felsenstein (2008), rather than working with species

means, considers data points collected on individuals

where multiple individuals may have been measured

per species. If Zs is the random effect design matrix

relating records (rows) to species (columns), then the

expected (co)variance between data points due to

measurement error (species) is equal to r2
s ZsZ

0
s where

ZsZ
0
s is a square block diagonal matrix which is

equivalent to M, and r2
s is the within-species variance

which can be interpreted as r2
m. The main differences

between this model and Ives et al. (2007) is that the

expected within-species variance is assumed to be

constant across species, and that the variance (r2
s ) is

unknown and must be estimated. In Ives et al. (2007)

the within-species variances are estimated on a species-

by-species level, and are incorporated into the model as

known quantities.

Again, it is implicitly assumed that r2
e ¼ 0 and we

disagree with Felsenstein (2008) that this model is

equivalent to the original phylogenetic mixed model of

Lynch (1991) because the two models only coincide

when the phylogenetic heritability ½H2 ¼ r2
a=ðr2

a þ r2
e Þ,
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which is also known as lambda (Pagel, 1999) is equal to 1].

Lynch (1991) did not assume that species means could be

completely explained by Brownian motion down a

phylogeny, and this is why a residual term was included

to model deviations of species means from those

expected. Although measurement error may be an

important source of these deviations, there are a range

of other processes that could cause them, and the

inclusion of a residual term could be seen as a robust

alternative (Lynch, 1991; Freckleton et al., 2002; Hous-

worth et al., 2004; Revell et al., 2008).

The method of Gilmour (c. 1996)

All of the above methods are standard in statistical

quantitative genetics and a great deal of effort has gone

into developing efficient computational strategies and

understanding the properties of the REML estimators.

Since 1996 at least, all of the above models could have

been fitted using ASReml (Gilmour et al., 2002). In the

Supporting Information, we give the ASReml-R syntax

for fitting the models presented above, and in each case

we also include a model with a residual term. We do not

present the theory, nor the algorithms involved, as this

information is widely available (Gilmour et al., 2002, and

references therein), but note that all analyses can be

fitted using a single line of code.

Worked example: a re-analysis of
Bergmann’s rule

Adams (2008) analysis of Bergmann’s rule found a mean

effect size of 0.2883 (SE 0.0301) using conventional fixed

effects meta-analysis, and a mean effect size of 0.672

(SE 0.4745) using phylogenetic meta-analysis.

Using ASReml we fitted the standard meta-analysis

and obtained exactly the same result as Adams (2008).

However, we prefer to use random effect meta-analysis

where the assumption is relaxed that the correlation

between latitude and body size would tend to the same

value if replication within each species was very large.

This type of assumption has been criticized even in the

context of controlled clinical trials (Higgins et al., 2009),

and would seem untenable when the data are associated

with different species (West & Sheldon, 2002). Using this

technique the log-likelihood increased by more than 100

indicating the model was much better. Although the

mean effect size was broadly similar (0.2271), the

standard error increased substantially (SE 0.1156)

because the original analysis underestimated the vari-

ability considerably. The correlation was not significant

at the nominal 0.05 threshold (P ¼ 0.057).

Using a phylogenetic meta-analysis under the assump-

tion that r2
e ¼ 0 we obtained a different answer from

Adams (2008) due to problems with the calculations

(mean effect size 0.1729 (SE 0.0995)). Relaxing the

assumption that r2
e ¼ 0 we obtained a mean effect size of

0.2271 (SE 0.1156) which coincides with the nonphylo-

genetic random meta-analysis because the REML esti-

mate of the phylogenetic variance was zero. It is worth

noting that the standard non-meta-analytic phylogenetic

model gives a different mean effect size (0.4454, SE

0.2364) and indicates a reasonable phylogenetic signal

(H2 ¼ 0.444).

In the context of this study we suggest a more direct

and powerful approach would be to fit a model of body

size with latitude as either an additional response

variable or as a fixed effect. Each study would be a

separate data point with species fitted as an additional

random effect. This analysis also allows species with only

a single data point to be included, which are excluded

from the former analysis because the correlation coeffi-

cient cannot be estimated. If these species are localized,

and Bergmann’s rule is the result of local adaptation,

then these species may well be a nonrandom sample due

to reduced gene flow, which in widespread species may

weaken the relationship between body size and latitude.

In later sections, we discuss multi-response models and

biases resulting from missing data, both of which are

relevant to meta-analysis.

Taxonomic mixed model

For many comparative analyses, the taxonomic scope is

often focused enough that a complete phylogeny is

available. However, meta-analyses often include a

heterogeneous collection of species for which the full

phylogenetic tree has only been partly resolved (for

example, Kingsolver et al., 2001). To accommodate this,

we show how the classic nested taxonomic model

(Clutton-Brock & Harvey, 1977) can be combined with

the phylogenetic mixed model (Lynch, 1991; Hous-

worth et al., 2004) to give a flexible framework with

which to model phylogenetic dependence. Combining

these models is a direct extension of Felsenstein

(2008).

In the nested taxonomic model (Clutton-Brock &

Harvey, 1977) we can model the data vector (y) as:

y ¼ lþ Zccþ Zooþ Zf f þ Zggþ Zssþ e ð11Þ

where c, o, f, g, s are vectors of random effects for class,

order, family, genus and species respectively. These can

be thought of as the expected mean statistics for the

different taxa, and these are related to the data by the

random effects design matrices Z. These design matrices

have dimensions equal to the number of data points

(rows) and the number of taxa at the subscripted

taxonomic level (columns). The design matrix for the

vector of residuals (e) is assumed to be an identity matrix

(I) and is therefore omitted. In addition, we assume a

simple fixed effects structure where only an intercept is

estimated. The taxonomic random effects are assumed to

be identically and independently distributed (i.i.d.) and

also normally distributed with a mean of zero and a
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taxonomic level-specific variance. For example, the

distribution of genus effects follows:

g � Nð0; r2
g IÞ ð12Þ

Taxonomic and phylogenetic mixed model

The taxonomic mixed model can be represented as a

phylogenetic mixed model allowing taxonomy and

phylogeny to be incorporated into a single analysis.

Although the two types of model have different biolog-

ical interpretations, they can be combined to give a

description of the data that are consistent with an

evolutionary process under certain, perhaps restrictive

assumptions.

To illustrate the interpretational differences between

the two types of model, we will start with a hypothetical

taxonomy with two special properties. First, the taxon-

omy is an accurate description of the true phylogenetic

topology which is polytomous when more than two

representatives of a taxon exist. Second, the different

taxonomic levels are assumed to be equally spaced in

evolutionary time, and thus the taxonomy also captures

phylogenetic branch lengths accurately. This second

assumption will be relaxed later.

An example of such a taxonomy/phylogeny is depicted

in Fig. 1 and can also be represented by the correlation

(because the tree is ultrametric) matrix A:

A ¼ 1

3
Zf Z

0
f þ

1

3
ZgZ

0
g þ

1

3
ZsZ

0
s

¼ 1

3

1 0 0 0 0

0 1 1 1 1

0 1 1 1 1

0 1 1 1 1

0 1 1 1 1

2
6666664

3
7777775
þ 1

3

1 0 0 0 0

0 1 1 0 0

0 1 1 0 0

0 0 0 1 1

0 0 0 1 1

2
6666664

3
7777775

þ 1

3

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

2
6666664

3
7777775

¼

1 0 0 0 0

0 1 2=3 1=3 1=3

0 2=3 1 1=3 1=3

0 1=3 1=3 1 2=3

0 1=3 1=3 2=3 1

2
6666664

3
7777775

ð13Þ

With the inclusion of a residual term the expected

(co)variance between data points is

V ¼ r2
f Zf Z

0
f þ r2

g ZgZ
0
g þ r2

s ZsZ
0
s þ r2

e I ð14Þ

As ZsZ
0
s is an identity matrix, species effects are

confounded with the residual component (each species

is measured only once) and so an identifiable taxonomic

model would be:

V ¼ r2
f Zf Z

0
f þ r2

g ZgZ
0
g þ ðr2

s þ r2
e ÞI

r2
f Zf Z

0
f þ r2

g ZgZ
0
g þ r2

es I
ð15Þ

where we use the superscript s in r2
es to indicate that the

term includes variation at the species level (s) through to

the residual level (e).

Alternatively, the model can be recast as the phyloge-

netic model, under the assumption that r2
f ¼ r2

g ¼ r2
s :

V ¼ r2
f Zf Z

0
f þ r2

g ZgZ
0
g þ ðr2

s þ r2
e ÞI

¼ r2
að13 Zf Z

0
f þ 1

3
ZgZ

0
g þ 1

3
IÞ þ r2

e I

¼ r2
aAþ r2

e I

ð16Þ

In reality, a taxonomy is unlikely to coincide with a

phylogeny exactly, except perhaps in topology, and so it

may make more sense to estimate the taxon-specific

variances. If it is found that the taxon-specific variances

are not equal, then there are two equally valid interpre-

tations. First, it could be that the taxonomy and the

phylogeny do coincide and that the different variances

represent temporal variation in phylogenetic inertia

(Fig. 2). Or alternatively, the phylogenetic signal may

be constant over time and the different variances indicate

that the taxonomic branch lengths must be rescaled in

order to coincide with the real phylogeny (Fig. 3).

Either interpretation is equally valid without prior

information (Paradis, 2006). However, there may be

parts of a taxonomy for which the phylogeny is available,

Fig. 1 A pictorial representation of a phylogeny where

branching events occur at regular intervals and each set of branching

events represent a different taxonomic grouping (order, family or

genus). Under these conditions the phylogeny and taxonomy can

be represented by scaled versions of the same picture/correlation

matrix (see eqn 13).
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and the assumption of a common variance across those

taxonomic levels may be valid. For example, it may be

that a phylogeny exists at the family level, but the

classification of species into genera is by taxonomy. As in

the standard taxonomic model, we can superscript

phylogenetic effects with the region that they span, from

the lowest taxonomic level to the highest, where ao:f

indicates that the phylogenetic effects are associated with

the complete phylogeny up to the family level (assuming

all taxa belong to the same order).

We could then fit the model:

y ¼ lþ Zaao:f þ Zggþ Zssþ e ð17Þ

assuming that there are multiple species within genera,

and multiple individuals within species, so that the

generic and specific variances are estimable. g and s both

follow the assumption of identical and independent

distribution as in the taxonomic model. However, the

phylogenetic effects (A) have expected (co)variances

proportional to the phylogenetic covariance matrix (A)

from the standard phylogenetic mixed model. However,

rather than the tips of the phylogeny being species,

the tips represent families (for the ASReml and

MCMC syntax for fitting this model, see Supporting

Information).

Publication bias and missing data

An important part of meta-analysis is to assess the

sensitivity of the parameter estimates to possible biases in

the way the data were collected. This bias is often

referred to as publication bias (Rothstein et al., 2005) and

it can occur at multiple stages of publication (e.g.

submission, review or editorial decision). The main cause

of publication bias is that statistically significant results

are more likely to be published than nonsignificant

results which are often relegated to the ‘file drawer’

(Rosenthal, 1979). This essentially results in missing

data, where the probability of missingness depends on

both effect size and sample size. In a comparative

context, however, it is also possible that nonrandom

sampling of species may happen due to species’ biology

and status (e.g. accessibility, abundance or conservation

status), which can be referred to as taxonomic bias

(Nakagawa & Freckleton, 2008). In quantitative genetics

this type of bias is known as selection bias (Lush &

Shrode, 1950), and can occur when individuals in the

pedigree have missing phenotypes, usually because they

died before they could be measured or before they

expressed the trait (Im et al., 1989; Hadfield, 2008). If the

missing phenotypes are a nonrandom sample, then

biased estimates are possible. However, the problem

can be alleviated if other data have been collected that

determine the relationship between phenotype and the

probability of missingness (Rubin, 1976). If this is the

case the data are said to be missing at random (MAR)

rather than missing completely at random (MCAR),

which covers the intuitive concept of randomness (Little

& Rubin, 2002; Nakagawa & Freckleton, 2008). In the

context of comparative analysis the condition of MAR

would be satisfied if a phylogeny is available that covers

those species for which trait data are unavailable, and

complete measurements are available for those traits that

determine the probability of missingness. For example,

Fig. 2 A representation of a taxonomic model fitted to a phylogeny

(Fig. 1) where the variance explained by each taxonomic level is

found to vary.

Fig. 3 A reparametrization of the taxonomic model in Fig. 2 so

that the variance explained by each taxonomic level is constant,

but the branch lengths connecting taxonomic levels are rescaled

to give a different phylogeny.
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information on life-history traits may be more likely to be

unavailable for rare species than common species. Then,

any association between abundance and life history can

cause biases if the missing data are not taken into

account. However, if abundance is available for all

species then by including abundance in the analysis,

either as a covariate or an additional response variable,

unbiased estimates are possible. This is achieved by

updating the missing life-history data conditional on the

information provided by abundance using data augmen-

tation, imputation or EM techniques (Fisher et al., 2003;

Nakagawa & Freckleton, 2008).

It is important to note that in phylogenetic meta-

analysis, effect size statistics are often considered to be

the species’ trait, for example when the relationship

between two variables or difference between two groups

are to be summarized (e.g. correlation coefficient or

Cohen’s d). Therefore, phylogenetic meta-analysis of

summary statistics will often suffer from both taxonomic

bias and publication bias, and this can be much harder to

correct for. The difficulty arises because of uncertainty in

the number of missing studies, and the complicated

decisions that govern the process of publication. Numer-

ous methods have been developed to detect and to

correct for publication bias, but there appears to be no

consensus on a general method (Smith et al., 2000;

Congdon, 2003; Rothstein et al., 2005). A full review is

outside the scope of this paper, but we briefly discuss

some simple heuristic techniques for dealing with pub-

lication bias.

Although various correlation- or regression-based

methods for detection of publication bias have been

suggested, they all suffer from the problem of statistical

power (Macaskill et al., 2001; Sterne et al., 2005). This is

due to the fact that publication bias is more likely to

occur and to cause incorrect estimates as the number of

studies used in a meta-analysis becomes smaller (Moller

& Jennions, 2001). Therefore, visual inspection of pub-

lication bias such as funnel plots (Sterne & Egger, 2005)

is generally more preferable (but see Kulinskaya et al.,

2008). Once publication bias is (visually) detected, the

correction of such bias may be necessary, and there are

several easy-to-use sensitivity tests available. One of

these is the ‘trim and fill’ method (Duval & Tweedie,

2000a,b; Duval, 2005) which relies on visual assessment

of funnel plot asymmetry and then, adding data points

that make the plot more symmetrical by utilizing existing

data points. The trim and fill method has been success-

fully applied to meta-analysis in ecology and evolution

(Jennions & Moller, 2002). In addition, the fail-safe N

(file-drawer number; Rosenthal, 1979) and related sta-

tistics (e.g. Orwin, 1983; Rosenberg, 2005) have often

been reported as a means of assessing the validity of

mean effect size estimates in meta-analysis in evolution

and ecology (Moller & Jennions, 2001), although more

recently these statistics have come under heavy criticism

(Becker, 2005).

Markov Chain Monte Carlo techniques for
non-Gaussian traits

Phylogenetic mixed models have mainly been applied to

traits which are assumed to be normally distributed (for

exceptions, see Felsenstein, 2005; Naya et al., 2006).

Generalized linear mixed models extend the linear mixed

model to non-Gaussian responses, although model fitting

has proved more difficult because the likelihood cannot

be obtained in closed form. MCMC techniques solve this

problem by breaking the high-dimensional joint distri-

bution into a series of lower dimensional conditional

distributions which are easier to sample from. By

repeatedly sampling from these conditional distributions

it is possible to very accurately approximate the complete

joint distribution, and thereby extract things of interest

(often marginal distributions).

For a thorough description of MCMC methods in the

context of quantitative genetics we refer the interested

reader to Sorensen & Gianola (2002). Here, we describe

an MCMC algorithm for fitting a basic phylogenetic

model and highlight those aspects which differ from

already published results. Due to lack of space we are not

able to cover the complete range of models that can be

fitted using this technique, and so we restrict ourselves

by highlighting a model with a nominal multinomial

response, as this model does not seem to have been

applied in quantitative genetics.

The general MCMC algorithm is described in detail

elsewhere (Hadfield, 2010), and we also provide an R

library (MCMCglmm) which is accompanied by a user

manual in which the full range of supported models are

discussed in greater detail. In brief, Gaussian, Poisson,

Zero-inflated Poisson, Binomial, Multinomial, Ordinal

and Exponential distributions are supported. More than

one response variable is allowed, and the multiple

responses can follow different distributions. Missing and

censored data for the responses are tolerated under the

assumption of a MAR process (Rubin, 1976). Any

number of fixed and/or random effects can be fitted,

and the random effects can be i.i.d. (as in species effects)

or correlated (as in phylogenetic effects). The routines are

fast, as all posterior simulations are done in compiled C++

using direct methods for sparse linear systems (Davis,

2006).

The basic model

With a Gaussian response the linear model is applied to y:

y ¼Whþ e ð18Þ
where W is a design matrix which relates the predictors

to the data, h is a vector of location effects (fixed and

random effects), and e is vector of residuals.

With non-Gaussian data a latent variable (l) is intro-

duced which is the canonical parameter of some distri-

bution on the link scale. For example, if datum yi is
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Poisson distributed and a log link specified then the

assumption is:

yi � Poisðk ¼ expðliÞÞ ð19Þ
where k is the canonical parameter of the Poisson

distribution (often called the rate parameter or mean

parameter) and exp is the inverse link function.

In this case the linear model is applied to l:

l ¼Whþ e ð20Þ
There is little distinction between fixed and random

effects in a Bayesian analysis (hence we represent both

with h). The ‘fixed’ effects are usually assumed a priori to

be independently distributed about zero with specified

variance (r2
B):

b � Nð0; r2
BIÞ ð21Þ

Usually r2
B is set to something large in order to

represent diffuse prior knowledge. The ‘random’ effects

are also assumed to come from a normal prior distribu-

tion with zero mean, but the variance (r2
a) is usually

inferred a posteriori:

a � Nð0; r2
aAÞ ð22Þ

and in the case of phylogenetic effects the identity matrix

(I) is replaced by a relationship matrix (A). In the

simplest case, the residuals are assumed to be i.i.d.:

e � Nð0; r2
e IÞ ð23Þ

where the residual variance r2
e is also estimated.

Parameter estimation

There are three types of parameter to estimate: the latent

variables (l), location effects (h) and the variance com-

ponents r2
a and r2

e . We describe the basic sampling

schemes using the example of a single trait following a

Poisson distribution.

The latent variables (l) do not have a recognizable

conditional distribution and so we sample them one at a

time using Metropolis–Hastings updates (Metropolis

et al., 1953; Hastings, 1970). The conditional probability

of the latent variable is proportional to the product of two

terms: the Poisson likelihood of the data given l and the

normal likelihood of e given a mean of zero and variance

r2
e .

The location effects are multivariate normal, condi-

tional on the latent variables and variance components,

and can be Gibbs sampled (Geman & Geman, 1984). We

use the Gibbs sampling method of Garcia-Cortes &

Sorensen (2001) which updates all the location effects

in a single pass and avoids inverting the mixed model

coefficient matrix.

The variance components follow scaled inverted

chi-squared distributions with scale equal to the cross-

product of the ‘random’ location effects, or the

cross-product of the residuals in the case of r2
e . As the

variance components come from a known distribution

they can be Gibbs sampled also. If the random effects are

correlated, as they will be for the phylogenetic effects, the

scale matrix is obtained using a¢A)1a rather than the

direct cross-product a¢I)1a¼a¢a.

Extensions to multiple responses

Multiple response models are not widely used in com-

parative biology but can be useful in many situations.

Extending the model to the multivariate case is straight-

forward by concatenating the data vectors and latent

variables for each trait and structuring the mixed model

equations accordingly. For simplicity, we consider a

bivariate Poisson analysis with response vector

y ¼ yð1Þ

yð2Þ

� �

and latent variable vector

l ¼ lð1Þ

lð2Þ

� �
:

In multi-response models it is usual to replace the

variance components with their multivariate analogues,

(co)variance matrices, which denote the variance within

each trait and between each trait for the designated

source of variance. For example, if Va is a 2 · 2 matrix

with the phylogenetic variance for the two traits along

the diagonal, and the covariance between the phyloge-

netic effects for the two traits in the off-diagonals, then

the complete set of phylogenetic effects

a ¼ að1Þ

að2Þ

� �

have the expected distribution N(0, Va � A) where � is

the Kronecker product.

The latent variables in the multi-response model are

sampled using Metropolis–Hastings updates as before,

although they are updated in blocks corresponding to

observational units (i). In the bivariate case, this involves

updating the latent variables l
ð1Þ
i and l

ð2Þ
i together, where

the likelihood is proportional to the product of three

densities: the Poisson density of y
ð1Þ
i given l

ð1Þ
i , the Poisson

density of y
ð2Þ
i given l

ð2Þ
i , and the density of the residuals

e
ð1Þ
i

e
ð2Þ
i

" #

from a bivariate normal distribution with null mean

vector and (co)variance matrix Ve (the multivariate

analogue of r2
e ).

The location effects remain multivariate normal as

before and so can be Gibbs sampled in a single pass

following the multivariate extension to the Gibbs sam-

pling method of Garcia-Cortes & Sorensen (2001)

(Korsgaard et al., 2003). The covariance matrices are

Gibbs sampled using the multivariate analogue of the
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scaled inverse chi-squared distribution: the inverse

Wishart distribution. The scale matrix in the multivariate

case has a similar form: [a(1)a(2)]¢A)1[a(1)a(2)].

Although similar in many respects to Felsenstein’s

(2005) application of MCMC to the comparative anal-

ysis of binary traits, the method differs in three

respects. First, the model is constructed explicitly as a

generalized linear model so that the concept of the

latent variable can be extended beyond binary traits to

other types of distribution. Second, the model can be

more easily generalized to multi-trait models where the

different traits can follow different distributions, and

lastly all fixed and random effects are sampled simul-

taneously from their multivariate conditional distribu-

tion rather than one at a time from univariate

conditional distributions. This is expected to improve

the efficiency of the algorithm substantially (Roberts &

Sahu, 1997).

Multinomial phylogenetic mixed model

We briefly describe some results additional to those

described above that are required to fit a multinomial

logit model for more than two nominal categories. The

model does not appear to have been used in quantitative

genetics but is quite widely used in econometrics and

political science (Congdon, 2005). However, fitting such

a model is a direct extension of a multivariate binary

mixed model, with additional constraints on parameter

space and a slight modification to the latent variable

likelihood. If the categories are ordered, then it is possible

to work with a different parametrization of the model

presented below (Hedeker, 2003), or alternatively the

ordered multinomial probit model can be used, which

has been used in quantitative genetics (Gianola &

Foulley, 1983).

In a binary model, a single data point can be one of two

categories (J ¼ 2), and this can be expressed as the

univariate binary variable. Likewise, if J > 2 then it is

usual to use a transformation that reduces the problem to

J ) 1 dimensions (Daganzo, 1979). In the binary model,

the motivation for the dimension reduction is obvious; if

a variable increased the probability of expressing the first

category by 10%, it must by necessity reduce the

probability of expressing the second category by 10%

because an individual cannot express both categories

simultaneously. The dimension reduction essentially

constrains the probability of expressing the first or the

second trait to unity [Pr(Yi ¼ j1) + Pr(Yi ¼ j2) ¼ 1]. For

the three-trait case, we will think of the three colours:

red, black and white. Denoting aij as the probability that

species i is colour j, the unit sum constraint has the formPJ
j¼1 aij ¼ 1. To reduce the problem into J ) 1 dimen-

sions, it is usual to work with the parametrization in

terms of a logs odd ratio with respect to an arbitrary

baseline category (we will use the first category – red) so

that

lij ¼ log
aij

ai1

� �
¼ logðaijÞ � logðai1Þ:

lij is the latent variable for individual i and colour j. The

problem can be represented using the contrast matrix D
(Bunch, 1991):

D ¼
�1 �1

1 0

0 1

2
4

3
5 ð24Þ

For a simple fixed effects model:

exp ððDD0Þ�1DXibÞ / E

ai1

ai2

ai3

2
4

3
5 ð25Þ

where Xi is the design matrix for species i and has J ) 1

rows. Likewise, the residual (Ve) and any random effect

(e.g. Va) covariance matrices are for estimability purposes

estimated on the J ) 1 space: Va ¼ D0V~aD and

Ve ¼ D0V~eD, where the tilde indicates a covariance

matrix on the scale of the three log(a)’s. Moreover, as

there is only a single realization from the multinomial,

then no element of Ve is estimable and must be fixed. A

choice for Ve is essentially arbitrary, and we choose to fix

Ve ¼ 1
J
ðI þ JÞ where J is the unit matrix. We can

visualize the unit sum constraint for three categories as a

model parametrized on the simplex (Fig. 4).

Discussion

In this paper, we develop both classic and new results

from quantitative genetics in the context of phyloge-

netic comparative analysis. We show how the relation-

ship between pedigree structure and phylogeny

structure can be used to exploit efficient algorithms

already developed for ‘animal model’ analyses. We also

suggest that many of the techniques currently being

developed in comparative biology have already existed

as standard REML tools in quantitative genetics for

at least a decade. More recently, Bayesian models have

gained popularity in quantitative genetics for certain

types of problem for which standard techniques were

known to behave poorly (Sorensen & Gianola, 2002;

O’Hara et al., 2008). Many of these problems also exist

for the comparative method, and we show how quan-

titative genetic MCMC algorithms can be implemented

for phylogenies. Taken together, these results not only

demonstrate that the theory and software for fitting the

original phylogenetic mixed model is well developed,

but also that extensions dealing with meta-analysis,

measurement error, missing data, multi-trait models,

non-Gaussian data, small-sample inference and uncer-

tainty in derived quantities such as phylogenetic heri-

tability are readily available. In addition, we extend the

quantitative genetic models to give a multinomial

phylogenetic mixed model for analysing categorical

traits: a type of model that does not appear to have
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been used in either field, quantitative genetics or

comparative biology.

The multinomial model developed in this paper follows

a logic similar to the threshold model of Wright (1934a,b)

for binary characters in that a continuous polygenic

probability is postulated that underlies which state is

manifest. The model received some of the earliest

Bayesian treatments in quantitative genetics (Foulley

et al., 1983; Gianola & Foulley, 1983), and was followed

by the development of MCMC procedures (Sorensen

et al., 1995) which are discussed at length in Sorensen &

Gianola (2002). Felsenstein (2005) discusses this thresh-

old model in the context of phylogenies and provides

alternative computational strategies for estimating the

relevant parameters also, using MCMC. Alternative

methods exist, mainly based around models of substitu-

tions in DNA sequences (Pagel, 1994; Huelsenbeck et al.,

2003; Pagel & Meade, 2006), but Felsenstein (2005) gives

a persuasive argument as to why the quantitative genetic

approach is to be preferred for the comparative analysis

of categorical phenotypes. From a statistical perspective,

a multi-trait threshold model can often be parametrized

with far fewer parameters, which given the small amount

of information in phylogenies reduces the chances of

trying to fit over identified models (Felsenstein, 2005).

From a biological perspective, we believe the substitution

model is harder to interpret in terms of phenotypic

evolution because it assumes that the probability from

jumping from a zero to one state is constant over the

phylogeny. When focus shifts to the underlying proba-

bility, species that have zero states, but that are found in

clades with many species in the one state, have an

increased chance of flipping to the one state relative to a

species found in clades dominated by zero states. This

reasoning seems natural because the expression of

phenotypes, even categorical ones, are often dependent

on a whole range of developmental and biochemical

processes being in place. For example, the re-appearance

of wings in a wingless lineage of stick insects should be

much less surprising than the appearance de novo of

wings on guinea pigs. This being said, both the threshold

model and the substitution model may be equivalent in

the univariate case, and the differences may be merely

interpretational; the substitution model would, no doubt,

infer a wingless ancestral state to the rodents with very

high confidence.

Fig. 4 The three axes in the left panel represent the probability of belonging to one of the three colours: red, back and white. In this example,

we assume that there are only three possible colours and so the two-simplex (triangle) represents the parameter space where the probability

of being one of the three colours is equal to one. With more than three categories, the model is difficult to represent, but the parameter

space of a four-category model would be a three-simplex (tetrahedron) in a four-dimensional subspace. Three points have been plotted in

parameter space (A, B and C) and for ease of interpretation, let us assume that these are the probabilities associated with an ancestral state. If

the phylogenetic heritability is high (or the phylogenetic distance between ancestor and descendant small) then these probabilities should

predict well the probabilities associated with their descendants. For example, descendants of species A should be red with high probability, and

descendants of species B should be red or white with equal probability but are unlikely to be black. Finally, descendants of species C are equally

likely to express any one of the three colours. It should be understood that the uncertainty regarding the expressed colours of species B and

particularly species C, does not reflect uncertainty in the underlying probability; species C really does have an equal propensity to express any

of the colours and the uncertainty is associated with exactly which colour is manifest. Although predictions of individual random effects

(BLUPS) could be plotted as above, it is more usual to interpret the distribution of the random effects. When these distributions are multivariate

normal they can be represented by ellipses circumscribing regions of trait space that have equal density. The right panel shows the hypothetical

distribution 1
3
ðI þ JÞ on the scale of the log contrasts, the scale on which the assumption of normality was made (which includes the scale

of the log probabilities log(a) also). The distribution is nonstandard on the inverse link (probability) scale, and so cannot be represented by

ellipses on the simplex. However, the probability distribution can be approximated using posterior simulation as shown in the central panel.

The distribution is seen to have triangular axes of symmetry and this is the motivation behind the choice of 1
3
ðI þ JÞ for Ve.
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As Housworth et al. (2004) noted, although phylog-

enies tend to be more informative than equally sized

pedigrees, typically phylogenies are orders of magnitude

smaller than pedigrees in evolutionary biology. As

measures of uncertainty and hypothesis testing are

often conducted using Fisher information or likelihood

ratio tests, both of which rely on large-sample asymp-

totic behaviour, statistical inference from small sample

sizes should be treated with some caution. Although

resampling techniques are often used to overcome this

problem, there seems to be little formal justification for

the resampling strategies employed (but see Lapointe &

Garland, 2001), which is surprising given that resam-

pling methods for dependent data are usually nontrivial

to develop (Shao & Tu, 1996). Furthermore, naive

application of basic resampling methods often give

incorrect results (Rao & Wu, 1988). For example, the

validity of permuting species data over the phylogeny in

a phylogenetic meta-analysis is unclear given that

permutation tests require the data to be exchangeable

under the null hypothesis. In Adams (2008) model, the

stated null hypothesis was a zero effect size, not a lack

of phylogenetic inertia; so, it seems unlikely that the

data are expected to be independent under the null

hypothesis. It would seem that the permutation test will

give the distribution of the test statistic in the absence

of phylogenetic inertia, irrespective of whether

Bergmann’s rule exists or not. Bayesian inference

makes no large-sample approximations and the result-

ing posterior distributions are an accurate description of

uncertainty given the probability model (Gelman et al.,

2004). However, with small phylogenies the relative

importance of prior information may increase, and

effort should be made in obtaining accurate prior

information and checking the sensitivity of the results

to alternative prior specifications.

Although the generalized phylogenetic mixed model is

a flexible tool for comparative analysis, having a range of

other models as special cases (e.g. independent contrasts,

Felsenstein, 1985; nested taxonomic model, Clutton-

Brock & Harvey, 1977), there are alternative comparative

methods that are based on different variance structures

(Hansen & Martins, 1996; Martins & Hansen, 1997).

These alternative models are often identical to well-

known models in time-series analysis and geostatistics

(Ives & Zhu, 2006); for example, the simple Ornstein–

Uhlenbeck model (Hansen & Martins, 1996) is equivalent

to the isotropic exponential; the continuous time ana-

logue of the first-order autoregressive model. We are not

familiar with these fields but given they are both large

and have a long history we suspect that many of the

problems involved with model fitting, over-identifica-

tion, missing data and prediction already have good and

well-tested solutions for these types of model. Following

Ives & Zhu (2006), we stress that although phylogenies

are unique and inherently interesting to biologists,

statistically they are little different from space, time or

pedigrees, all of which have been the focus of much

statistical research.
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Appendix

To obtain (E)GLS, REML or Bayesian estimates, it is

necessary to form A)1 or S)1 where

S ¼ F B
B0 A

� �
ð26Þ

F is a square matrix of dimension n ) 2 (the number

of internal nodes, excluding the root, where n is

the number of tips). Following Henderson (1976), the

lower triangle matrix (L) of the Cholesky decomposition

S ¼ LL¢ can be formed recursively:

Lti ¼
Lpti; for i ¼ 1; . . . ; pt;
0; for i ¼ pt þ 1; . . . ; t � 1;ffiffiffi

f
p

t; if i ¼ t;

8<
: ð27Þ

where pt indexes the parental node of t and ft is the length

of the branch connecting node t to pt. It is interesting to

note that ft is equivalent to the inbreeding coefficient in

the context of a pedigree.

Note that L¼TD where D is a diagonal matrix with

diagonal elements equal to those of L (
ffiffiffi
f
p

t), and T has

the same nonzero pattern as L, but with all nonzero

elements equal to one. Henderson (1976) shows that T is

easy to invert, with T)1 being a lower triangle matrix

with all diagonal elements equal to 1, and all nonzero

elements left to the diagonal of the t th row being )1 for

columns corresponding to the node t p. This is useful

because:

S�1 ¼ ðLL0Þ�1

¼ ðTDDT0Þ�1

¼ ðT0Þ�1D�2T�1

ð28Þ

and because D is diagonal, D)2 is also diagonal, each

diagonal element of D taken to the power )2. This leads

to a simple recursive algorithm for the inverse:

S�1
ti ¼

� 1
ft
; if i ¼ pt or i 2 Ot;

1
ft
þ
POt

o
1
fo
; if t ¼ i;

0; otherwise,

8<
: ð29Þ

where Ot are the set of t’s child nodes.

Using expectation–maximization (EM) (Dempster

et al., 1977) techniques for REML or data augmentation

(Tanner & Wong, 1987) techniques for a Bayesian

analysis, we can treat the ancestral states as missing data

and work with the S)1 parametrization rather than the

usual A)1 parametrization.
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Supporting information

Additional Supporting Information may be found in the

online version of this article:

Appendix S1 Additional Supporting Information may

be found in the online version of this article:

General quantitative genetic methods for comparative

biology.

As a service to our authors and readers, this journal

provides supporting information supplied by the

authors. Such materials are peer-reviewed and may

be re-organized for online delivery, but are not copy-

edited or typeset. Technical support issues arising from

supporting information (other than missing files)

should be addressed to the authors.
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