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Most phylogenetic comparative methods used for testing adaptive hypotheses make evolutionary assumptions that are not com-

patible with evolution toward an optimal state. As a consequence they do not correct for maladaptation. The “evolutionary

regression” that is returned is more shallow than the optimal relationship between the trait and environment. We show how both

evolutionary and optimal regressions, as well as phylogenetic inertia, can be estimated jointly by a comparative method built

around an Ornstein–Uhlenbeck model of adaptive evolution. The method considers a single trait adapting to an optimum that is

influenced by one or more continuous, randomly changing predictor variables.
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Optimality models and other adaptive hypotheses are often tested

by comparing their predictions to the trait values of species in dif-

ferent environments (e.g., Ridley 1983; Harvey and Pagel 1991).

Most comparative methods are, however, based on models that

are inconsistent with evolution toward an optimum. For example,

the method of independent contrasts makes the assumption that

traits evolve according to a Brownian-motion process (Felsenstein

1985), but if evolution is governed by this process, the expected

trait value of a descendant species must equal the trait value of

its ancestor, and there can be no systematic evolution toward an

optimal state. If the ancestral species’ trait value does not match

the optimum, then the trait value of the descendant species is

not expected to match it any better. Hansen and Orzack (2005)

4Current address: Department of Zoology, University of Hawaii at

Manoa, Honolulu, Hawaii 96822

called this the problem of inherited maladaptation. A multivariate

Brownian-motion process can be used to represent correlated evo-

lutionary changes in two or more traits, but correlated evolution

is not equivalent to adaptive evolution. For example, suppose we

predict that the optimal relation between two traits, x and y, is

y = x. This simple prediction is incompatible with evolution as

a Brownian-motion process. Even if there is a positive correla-

tion between changes in y and x, any deviation from the 1:1 line

will be inherited by the descendant species and there will be no

systematic tendency to evolve toward the predicted relationship.

This lack of attention to the fundamental nature of adaptive

evolution has influenced the application of phylogenetic compar-

ative methods. Such methods are often used erroneously to “cor-

rect” for phylogeny when they should only correct for the resid-

ual effects of phylogeny that remain after adaptation has been

accounted for. A phylogenetic signal in the data can arise both
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from the influence of ancestral character states due to a lag or

inertia in adaptation to the current niche, and from the effects of

adaptation to niche variables that are themselves phylogenetically

structured. One should correct only for the former. Correcting for

effects stemming from adaptation to phylogenetically structured

variables can amount to correcting for the very phenomenon that

one wants to study, and may lead to erroneous inferences about

both adaptation and inertia.

As reviewed by Blomberg and Garland (2002), terms such as

phylogenetic effect and phylogenetic inertia have been given many

and often vague meanings. In this article, we will use the term

inertia to denote a resistance to or slowness in the adaptation to a

specific optimum. Such inertia will generate patterns of correlated

maladaptation in related species, which need to be corrected for

in the study of adaptation. The causes of inertia could include

any constraint on the process of adaptation toward the specified

optimum. In contrast, we will use the terms phylogenetic effect

(or signal) to denote any statistical influence of phylogeny on the

trait. This distinction between inertia and effect is essential to

understand the arguments in this article.

We have previously argued that inertia and adaptation must

be analyzed in a joint framework in which both are controlled for

the effects of the other (Orzack and Sober 2001; Sober and Orzack

2003; Hansen and Orzack 2005). Only in this way can we correctly

test hypotheses about adaptation to an optimal state. Furthermore,

many comparative studies compound the problem by only testing

for presence or absence of phylogenetic effects. It is clear that

different traits can display very different levels of phylogenetic

effects and presumably very different levels of phylogenetic inertia

(Freckleton et al. 2002; Blomberg et al. 2003; Ashton 2004). It is

therefore essential to base analyses of adaptation on parametric

estimates of inertia.

Few phylogenetic comparative methods deal successfully

with these problems (Orzack and Sober 2001; Hansen and Orzack

2005). For continuous response traits, the “adaptation-inertia”

method of Hansen (1997) is the only approach that both allows for

joint estimation of inertia and adaptation, and is based on an evolu-

tionary model that avoids the problem of inherited maladaptation.

This method only works, however, for fixed predictor variables, or

“niches,” that can be mapped onto a phylogeny (Butler and King

2004). Here we extend the method to include continuous predictor

variables that evolve randomly over time.

Model
BACKGROUND: A MODEL OF ADAPTATION TO A

PRIMARY NICHE OPTIMUM

It has long been realized that proper statistical analysis of compar-

ative data must take account of the phylogenetic relationships be-

tween species (Felsenstein 1985; Harvey and Pagel 1991; Martins

and Hansen 1996; Martins 2000; Rohlf 2001). To do so requires

phylogenetic information, and also a model of the evolutionary

process that unfolds on the phylogeny (Felsenstein 1988; Hansen

and Martins 1996; Martins et al. 2002). The choice of process

model is crucial, and it is essential that this choice is compatible

with the evolutionary hypotheses under test.

Following Hansen (1997), we assume that the response trait,

y, evolves toward a “primary” niche optimum, �, which is pre-

dicted by the adaptive hypothesis under test. The simplest stochas-

tic model that allows evolution toward a specific state is the so-

called Ornstein–Uhlenbeck process, which can be represented by

the stochastic differential equation

dy = −�(y − �) dt + �y dWy,

where dy is the change in y over a time step dt, � is a param-

eter measuring the rate of adaptation toward the optimum, dWy

is a white-noise process (i.e., independent, normally distributed

random changes with mean zero and unit variance), and � y is

the standard deviation of the random changes. Thus, one compo-

nent of evolution is a linearly increasing deterministic pull of the

trait toward the primary optimum, and the other is a nondirected

stochastic change.

We interpret the Ornstein–Uhlenbeck model not as describ-

ing evolution toward a fixed fitness optimum, but as describing the

movements of the fitness optima themselves, as influenced by a

number of unmeasured variables. Adaptation to a particular niche

is defined as the approach to the primary optimum defined by this

niche. Hansen (1997) defined the primary optimum for a niche as

the average fitness optimum that would be reached by a large num-

ber of independent species evolving for a long time in this niche.

The term “primary” derives from Simpson’s (1944) notion of pri-

mary and secondary adaptation where primary adaptations might

be inhibited by variation in secondary adaptations that exhibit phy-

logenetic variation. To this extent, the stochastic part of the model

represents changes in the fitness optimum generated by changes in

unmeasured selective factors and other third variables. Note that

the Ornstein–Uhlenbeck model can also be derived from Lande’s

(1976) model of the dynamics of stabilizing selection and genetic

drift, but on the evolutionary time scales relevant to most com-

parative data, Lande’s model predicts essentially instantaneous

movements around the optimum, and is therefore incompatible

with the presence of phylogenetic inertia (Hansen and Martins

1996; Hansen 1997; but see Estes and Arnold 2007). This shift in

interpretation of the Ornstein–Uhlenbeck model from describing

dynamics on the adaptive landscape to describing dynamics of the

adaptive landscape is a key step toward linking microevolutionary

processes to macroevolutionary pattern (see Arnold et al. 2001).

For a fixed primary optimum, we can solve the above stochas-

tic differential equation (see Appendix). The expected trait value

of a species that has evolved for a period of time, t, toward the

primary optimum, �, is

1966 EVOLUTION AUGUST 2008



COMPARATIVE TESTING OF ADAPTIVE HYPOTHESES

E[y(t)] = �(1 − e−�t ) + yae−�t ,

where ya is the ancestral value of the trait. The expected trait value

of a species is a weighted average of the influences of the primary

optimum and of the ancestral trait value. The weighting factor,

e−�t, depends on how much time, t, the species has spent evolving

in the niche, and on its rate of adaptation, �. The rate of decay

of the influence of the ancestral trait value can also be measured

as a “phylogenetic half-life,” defined as the time it takes for the

expected trait value to move half the distance from the ancestral

state to the primary optimum (Hansen 1997). In this model the

phylogenetic half-life is

t1/2 =
ln 2

�
.

If the half-life is short relative to phylogeny, it means that adapta-

tion to the primary optimum is rapid in expectation, and if the half-

life is long, it means that ancestral influence lingers, and we expect

species to be poorly adapted to the primary niche. A half-life of

infinity corresponds to evolution governed by a Brownian-motion

process, and there is no tendency to move toward the optimum.

The rate of adaptation and the half-life are also related to the

phylogenetic correlations between species, as discussed below.

Given fixed niches mapped onto a phylogeny, one can use a

general linear model or likelihood framework to obtain estimates

of the primary optima in these niches, as well as estimates of

phylogenetic inertia (Hansen 1997; Butler and King 2004).

ADAPTATION TO A RANDOMLY CHANGING OPTIMUM

The statistical framework developed by Hansen (1997) and But-

ler and King (2004) has the assumption that the niches and their

primary optima are fixed on the phylogeny. Here, we will assume

instead that the optimum at any point on the phylogeny is a func-

tion of a randomly changing predictor variable, x, for which we

only know the value at the tips of the phylogeny. We will assume

that the predictor variable evolves as if by a Brownian-motion

process. This is a reasonable choice for a variable influenced by a

large number of unknown stochastic factors, which due to the cen-

tral limit theorem will combine to generate normally distributed

random changes at any given time.

We now have coupled stochastic differential equations:

dy = −�(y − �(x)) dt + �y dW y,

dx = �x dWx ,

where the primary optimum is a function of the predictor vari-

able, x. Note that the predictor only indirectly influences the trait

through its influence on the fitness optimum for the trait. In the

Appendix we obtain the moments of this model. If we assume

that all species are extant and that the relationship of the primary

optimum to the predictor variable is a simple linear regression,

� = b0 + b1x, then the predicted “evolutionary regression” of y

on x is

Figure 1. The evolutionary regression slope as a function of iner-

tia: (A) the expected evolutionary regression as a function of the

rate of adaptation (�). (B) The expected evolutionary regression as

a function of the phylogenetic half-life (t1/2). The total phylogeny

length is scaled to one, and b denotes the value of the optimal

regression slope.

E[y|x] = k +

(

1 −
(1 − e−�t )

�t

)

b1x,

where k is a constant (see the Appendix). Note that the evolu-

tionary regression slope is a product of a phylogenetic correction

factor, � (�t) = (1 − (1 − e−�t)/�t), due to inertia, and of the

underlying “optimal regression” slope, b1, which describes the

relation between the optimum and the predictor variable. Figure 1

illustrates the effects of phylogenetic inertia on the evolutionary

regression. Note also that the intercept k is not identical to optimal

intercept b0 and that we cannot recover an independent estimate

of b0 because k is influenced by the ancestral values of y and x.
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INTERPRETING THE OPTIMAL AND THE

EVOLUTIONARY REGRESSIONS

The optimal regression describes the relationship between the trait

and the predictor that we would observe if the trait was able to

evolve fast enough to perfectly track the changes of the predictor.

It is an estimate of the optimal relationship free of constraints. In

contrast, the evolutionary regression is the standard (generalized)

least squares regression of trait on the predictor, and is influenced

by both adaptation and inertia. The evolutionary and the optimal

regressions are not alternative models, but estimates of different

aspects of the same model. A prediction from an optimality model

should ideally be tested against the optimal regression, and not

against the evolutionary regression. The difference between the

two regressions tells us about the influence of evolutionary lag on

the relationship between the predictor and the response trait.

PHYLOGENETIC COVARIANCES

To estimate the regression parameters, we need the variances and

covariances of the residuals from the model. In the Appendix we

derive the following formula for the residual covariance between

two species i and j:

Cov[ri , r j ] =

(

�2
� + �2

y

2�

)

(

1 − e−2�ta
)

e−�ti j

+ �2
� ta

(

(

1 − e−�t

�t

)2

−2

(

1 − e−�t

�t

1 − e−�ta

�ta

)

e−�ti j /2

)

,

where t is the elapsed time from the base of the phylogeny to the

present, ta is the time from the base to the most recent common

ancestor of the two species, and tij is the time separating the two

species. The parameter �2
� = b2

1 �2
x is the instantaneous variance

of the optimum. We assume that all species have the same value

of t, as would be the case when all species are extant. The residual

variances are found by setting i = j, such that tij = 0 and ta = t.

EXTENSION TO MULTIPLE REGRESSION

We can also assume that the primary optimum is a linear com-

bination of predictor variables, xi, each of which evolves as if

by a Brownian motion, such that � = b0 +
∑

i bi xi . To recover

the bi through a regression of y on the x’s, we use the following

regression:

E[y|x1, x2, . . .] = k + � (�t)
∑

i
bi xi ,

in which each optimal regression coefficient is scaled by the phy-

logenetic correction factor, � (�t). The residual covariances for

this model are given in the Appendix.

The Method
GENERAL SET UP

Estimates of the vector of regression parameters can be derived

from the following model:

y = Xb + r, r ∼ N (0, V),

where y is an n-dimensional vector of species means, X is an

n × q design matrix, b is a vector of q regression parameters, r

is a n-vector of residual deviances from the model, assumed to

follow a normal distribution with zero mean vector, and n × n

variance matrix, V, containing the residual variances and covari-

ances given above. The entries in the design matrix define the

regression model. For a regression with one predictor variable,

the design matrix has two columns: each entry in the first col-

umn is 1, whereas entries in the second column are � (�t)xi, where

xi is the observed value of the predictor variable for species i.

This design matrix is identical to the design matrix of a standard

multiple regression except that each predictor variable is multi-

plied by � (�t). The residual variance matrix can also contain the

measurement variances of the response and predictor variables as

described in Martins and Hansen (1997).

Given a design matrix and a residual variance matrix, gener-

alized least squares (GLS) can be used to provide estimates of the

regression parameters. The GLS estimates of regression parame-

ters are, however, conditional on knowing the various parameters

that appear in the design and variance matrices (i.e., �, �2
y , �2

x).

This can be solved by estimated GLS (Martins and Hansen 1997;

Butler et al. 2000), where nuisance parameters and regression pa-

rameters are estimated conditionally on each other in an iterative

manner.

THE ALGORITHM

Assuming the predictor variables evolve independently, their vari-

ances are estimated as

�̂2
x =

(x − E[x])T T−1(x − E[x])

n − 1
,

where x is the vector of species values for the predictor variable

in question, and T is the matrix of shared branch lengths. The

estimate of the mean of the x variables is E[x] = (1TT−11)−11Tx,

where 1 is a column vector of ones. To estimate �, �2
y , and the re-

gression parameters, we generate a grid based on the transformed

parameters, t1/2 = ln(2)/�, and vy = �2
y /2�. The parameter vy is

the equilibrium variance of the Ornstein–Uhlenbeck process. It de-

scribes the among-species variance we expect for a set of species

that have evolved for a long time in a constant niche. For each set

of values we first estimate the regression parameters with GLS.

Because the regression slope also enters into the variance matrix,

this is done iteratively. We start with an ordinary least-squares es-

timate of the regression parameters (i.e., b̂0 = (XT X)−1XT y). We
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use this initial estimate to obtain a GLS estimate of the regression

parameters as

b̂ = (XT V−1X)−1XT V−1y,

where b, t1/2, vy, and �2
x enter into V, and t1/2 enters into X. This

iterative procedure is continued until b̂ no longer changes. At this

point we evaluate the support (= log likelihood) function

S(�, vy) = −
n

2
Ln[2�] −

1

2
Ln[Det[V]]

−
1

2
(y − Xb)T V−1(y − Xb).

When all values of t1/2 and vy have been evaluated, we compare

their support. The maximum-likelihood values of t1/2 and vy, and

their associated b̂ are returned.

The final step is to obtain measures of uncertainty for the

parameter estimates. Estimation variances and covariances for b̂

can be computed as Var[b̂] = (XT V−1X)−1, and be used to form

standard errors and confidence intervals. The uncertainty of �̂ and

v̂y can be obtained from the likelihood function. We recommend

reporting support sets; that is all the values of t̂1/2 and v̂y that are

within two support units of the best estimate (Edwards 1992).

MODEL EVALUATION, COMPARISON, AND

DIAGNOSTICS

We second the recommendation of Butler and King (2004) to

use information criteria for model evaluation. For comparative

studies, we recommend the following small-sample version of

AIC (Burnham and Anderson 2004):

AICc = −2S[p̂] +
2mn

n − m − 1
,

where S[p̂] is the log likelihood of the parameter vector p̂ contain-

ing all parameters in the model, m is the number of parameters, and

n is the number of taxa. A lower value of AICc signifies better fit.

In the present model, the number of parameters, m, is two (� and

vy) plus the number of parameters in the regression model (1 +

number of predictor variables). We do not count �2
x and the mean

of the predictor variables, which are estimated independently of

the response data.

The user needs to assess whether the data and research ques-

tions are compatible with our model of trait evolution. The model

will not be appropriate for all traits, especially because of our

assumption of one-way causation, as reflected in our use of a

regression model, as opposed to a correlational model. We do

not expect the method to be very sensitive to violations of the

Brownian-motion assumption for the predictor variables, but note

that adaptation cannot take place if the predictor variables are

changing much faster than the rate of adaptation. It is advisable to

compute the t1/2 for each predictor variable (derived from a model

only including an intercept), and check that this is approximately

equal to or larger than the t1/2 for the adaptive process with respect

to the predictor variable. It is also advisable to visually inspect the

normality of the residuals from the fitted model.

Another important assumption of our approach is that the

evolutionary process is homogeneous across the phylogeny. For

a large phylogeny, it is possible to check for homogeneity by

fitting the model separately to different parts of the phylogeny.

O’Meara et al. (2006) show how hypotheses of rate variation

across the phylogeny can be evaluated with likelihood. They focus

on Brownian-motion models, but the approach could be extended

to an Ornstein–Uhlenbeck model.

Parameters such as t1/2 are estimated with relatively low ac-

curacy, and may not be significantly different from zero even when

the best estimate indicates that there is substantial phylogenetic

inertia. Accordingly, inferences about inertia should be based on

an estimate and the support interval, and not on statistical signifi-

cance. For small datasets, we recommend doing the analysis on a

set of fixed t1/2 values with reasonable biological meaning.

COMBINING FIXED AND RANDOM VARIABLES IN THE

MODEL

It is possible to include fixed effects in the model in the manner

described by Hansen (1997) and Butler and King (2004). This in-

volves mapping the state of the fixed effects onto the phylogeny,

and then computing the influence of each state on each species.

This influence will depend on the degree of inertia, with older

states being weighted less when there is less inertia. The equa-

tions to include in the design matrix are given in Hansen (1997)

and Butler and King (2004). Methods for random categorical pre-

dictors remain to be developed.

UNEQUAL BRANCH LENGTHS

When species have unequal total branch lengths, as is likely when

the data include extinct species, each species has its own phyloge-

netic correction factor and intercept based on its own individual

elapsed time back to the base of the phylogeny. The residual vari-

ance matrix also becomes more complicated. The equations to use

for nonultrametric phylogenies are given in the Appendix. When

the unequal total branch lengths are due to estimation error, it may

be more logical to transform the phylogeny to ultrametric form,

or at least use the same � (�t) for all species. It may, however, still

be advisable to use the best estimate of the branch lengths when

computing the residual covariances, as these may more accurately

estimate the distances between the species.

Implementation and Example
SOFTWARE

To implement the method we have developed an extension

to Butler and King’s (2004) OUCH program in R. This pro-

gram, called SLOUCH (Stochastic Linear Ornstein-Uhlenbeck
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models for Comparative Hypotheses), is available, along with

a user manual, from http://folk.uio.no/thomasha/Programs/, or

http://www.freshpond.org/software/SLOUCH. The input format

of SLOUCH is similar to OUCH. SLOUCH requires a phylogeny

with branch lengths and vectors with values for dependent and

independent variables. The user must specify a set of candidate

values for some of the parameters (� or t1/2, and vy), while the

program calculates the best estimates of the other parameters (re-

gression coefficients and �2
x).

EXAMPLE: AN ANALYSIS OF RENSCH’S RULE IN

PRIMATES

Rensch’s rule states that sexual size dimorphism increases with

body size when the female is the smaller sex (Rensch 1959, p. 157–

159; Abouheif and Fairbairn 1997). In primates, Rensch’s rule has

been the subject of numerous comparative studies with varying

results (see for example Cheverud et al. 1985; Plavcan and van

Schaik 1992; Smith and Cheverud 2002; Thoren et al. 2006). To

illustrate our method, we analyze the relationship between sexual

size dimorphism, measured as the log of the ratio of male to female

body weight, and log female body weight in primates. We use data

and a molecular phylogeny for 105 species reported in Smith and

Cheverud (2002). As we wish to merely illustrate the method, we

will not control for mating system, correct for measurement error

Figure 2. A phylogeny of 105 species of primates from Smith and

Cheverud (2002). The branch leading to the Haplorhini is marked as

1, the branch leading to Catarrhini is marked as 2, and the branch

leading to the Platyrrhini is marked as 3. The time scale is in millions

of years.

and spurious correlation, or fully assess heterogeneity in different

parts of the phylogeny. These and other extensions are left for a

future contribution.

The phylogeny of the 105 primate species is shown in

Figure 2. In Figure 3 we show the support surface for the phy-

logenetic half-life, t1/2, and the equilibrium variance parameter,

vy. The best estimate of the half-life is t1/2 = 8.17 million years

(myr), and the two-unit support region is from t1/2 = 5.10 myr to

t1/2 = 14.74 myr. Thus, according to the best estimate it would

take 8.17 myr for the average species to evolve half the distance

toward a new primary optimum. This indicates fairly strong iner-

tia in the evolution of body-size dimorphism, but given the length

of the phylogeny (63 myr), the phylogenetic correction factor cor-

responding to the best estimate of the half-life is still as high as

� = 0.81. Thus, the evolutionary regression slope is 81% of the

underlying optimal slope (Fig. 4). The best estimate of the optimal

regression slope is 0.081 ± 0.020, which means that a doubling

of body size would give about 6% increase in the optimal sexual

size dimorphism. Although highly significant, this explains only

13% of the among-species variation. Thus, our analysis supports

size-dependent sexual size dimorphism in primates, but not as a

strong pattern.

To illustrate a more dramatic influence of phylogenetic iner-

tia we consider only the 47 Catarrhine species. For this group the

Figure 3. Support surface for the phylogenetic half-life (t1/2)

and the stationary variance (vy) for a regression of ln(male body

weight/female body weight) on ln(female body weight) for all pri-

mates. The maximum-likelihood estimate (the peak of the surface)

is t1/2 = 8.17 myr and vy = 0.035. The elevated (tear-drop shaped)

area shows all points that are within two support units of the best

estimate. The evidence against a model without phylogenetic in-

ertia (t1/2 = 0) is 30.47 support units, and the evidence against a

Brownian motion (implying no adaptation) is 13.58 support units.

These results are conditional on the best estimate of the instanta-

neous variance of the independent variable (�2
x = 0.396).
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Figure 4. Evolutionary (—) and optimal (- - - -) regressions of

sexual dimorphism (ln[male weight/female weight]) on female

body size (ln[female weight]) for the primate data from Smith and

Cheverud (2002). The optimal regression is � = 0.108 + 0.081x,

and the evolutionary regression is y = 0.108 + 0.066x. The vari-

ance explained is R2 = 13.0%.

best estimate of t1/2 is 10.30 myr, but the two-unit support interval

now extends from 4.12 myr to infinity (Fig. 5). Although, we can-

not decisively conclude that inertia is stronger for this group than

for the entire set of primates, we get a much larger adaptive lag

between the evolutionary and the optimal regression, because the

Catarrhines have only had 21 myr to diversify (Fig. 6). The best

estimate of the optimal regression slope is 0.253 ± 0.106, which

indicates that there is selection for a stronger size dependence of

sexual size dimorphism in the Catarrhines than in the rest of the

primates, but the evolutionary regression is only about 50% of

this value. In fact, Rensch’s rule predicts a stronger positive rela-

tionship within the Catarrhines, because the entire set of primates

contains many species in which females are larger than males (see

Fig. 4); their inclusion violates the condition of the rule.

PERFORMANCE OF THE METHOD

We tested our estimation algorithm by applying it to datasets cre-

ated by simulating the evolutionary model with known parame-

ters. The ability to create such simulated datasets is a feature of

SLOUCH, as detailed in the SLOUCH manual.

For the full primate phylogeny and for the Catarrhine sub-

clade we generated 100 datasets, and for each we estimated the

regression slopes and the phylogenetic half-life. These simulations

were based on the best estimates from the original data above. For

the full phylogeny the estimates of t1/2 appeared almost unbi-

ased and only 11 estimates were (marginally) outside the two-unit

Figure 5. Support surface for the phylogenetic half-life (t1/2)

and the stationary variance (vy) for a regression of ln[male

weight/female weight] on ln[female weight] for the Catarrhines.

The maximum-likelihood estimate is t1/2 = 10.30 myr and vy =

0.068. The elevated area shows all points that are within two sup-

port units of the best estimate. The evidence against a model of no

phylogenetic inertia (t1/2 = 0) is 17.12 support units, and the ev-

idence against Brownian motion (implying no adaptation) is 1.54

support units (the heavy tail extends out to t1/2 = ∞). These re-

sults are conditional on the best estimate of the instantaneous

variance of the independent variable (�2
x = 0.043).

support set reported above (Fig. 7). Estimates of the optimal re-

gression slope had a moderate downward bias (although still much

less biased than the evolutionary regression), but it is encouraging

that all but three estimates were positive despite the small true

value.

Figure 6. Evolutionary (—) and optimal (- - - -) regressions of sex-

ual dimorphism on female body size for the Catarrhines. The op-

timal regression is � = 0.046 + 0.253x, and the evolutionary re-

gression is y = 0.048 + 0.130x. The variance explained is R2 =

10.8%.
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Figure 7. Distribution of estimates from simulations on the pri-

mate phylogeny: Simulations based on the best-estimated pa-

rameters. (A) The phylogenetic half-life. (B) In black, the optimal

regression (o.r.) slope. In gray, the evolutionary regression (e.r.)

slope.

The results for the Catarrhine subclade were similar, but less

accurate (Fig. 8). Estimates of the half-life had slight positive bias

with 10 estimates outside the support set, but estimates were al-

ways larger than zero, and the largest value was 77 myr, even

though the support set included infinity. Estimates of the optimal

Figure 8. Distribution of estimates from simulations on the Catar-

rhine phylogeny: Simulations based on the best-estimated pa-

rameters. (A) The phylogenetic half-life. (B) In black, the optimal

regression (o.r.) slope. In gray, the evolutionary regression (e.r.)

slope.

Figure 9. Distribution of estimates from simulations with weak

inertia on a symmetric 64-species phylogeny: Parameter values for

simulations are �
2
x = 1, vy = 0.1, t1/2 = 0.1, b0 = 0, b1 = 1, ancestral

values of x and y are zero, and total length of phylogeny is one.

(A) The phylogenetic half-life. (B) In black, the optimal regression

(o.r.) slope. In gray, the evolutionary regression (e.r.) slope.

regression were downwardly biased, and in this case 16 estimates

were negative. Estimates of the other parameters, such as the re-

gression intercept and the vy, were more accurate (not shown).

We also created simulated data for a symmetric 64-species

phylogeny with equal branch lengths. In this case estimates of the

optimal regression slope were nearly unbiased for t1/2 = 0.1 (Fig.

9), and t1/2 = 0.5 (Fig. 10). This suggests that the bias we observed

on the primate phylogenies may be due to their asymmetries. In

particular, both the full primate phylogeny and Catarrhine sub-

clade have a few relatively long branches from the base that could

make the simulated data sensitive to random events along these

branches. The regression within the clades stemming from these

long basal branches will be shallower than the predicted regres-

sion across the whole dataset. If the phylogeny is asymmetric, the

estimate of the regression slope may be dominated by the shallow

regression through the larger subclade.

The simulations on the symmetric phylogeny showed good

performance of the estimators of half-life and regression slopes

with weak phylogenetic inertia (t1/2 = 0.1, Fig. 9), but perfor-

mance was less good with strong phylogenetic inertia (t1/2 = 0.5,

Fig. 10). In the latter case, there was an upward bias in the esti-

mates of the half-life, and the estimates of the optimal regression

slope were imprecise. Qualitative conclusions would still be reli-

able, as the method invariably reported strong phylogenetic inertia

and a positive regression slope.
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Figure 10. Distribution of estimates from simulations with strong

inertia on a symmetric 64-species phylogeny: Parameter values for

simulations are �
2
x = 1, vy = 0.1, t1/2 = 0.5, b0 = 0, b1 = 1, an-

cestral values of x and y are zero, and total length of phylogeny

is one. (A) The phylogenetic half-life. (B) In black, the optimal

regression (o.r.) slope. In gray, the evolutionary regression (e.r.)

slope.

We conclude that the method performs reasonably well on

larger phylogenies, but estimates of phylogenetic inertia are rather

inaccurate, and especially so when there is strong inertia. Thus,

estimates of t1/2 and the optimal regression slopes should be inter-

preted with caution. We suggest that only qualitative conclusions

should be made for phylogenies with less than, say, 20–30 species,

depending on the data quality and the shape of the phylogeny. In-

stead of relying solely on the best estimate of the half-life, we

suggest doing the analysis conditionally on a set of biologically

reasonable choices of t1/2, and discussing the results as if-then

propositions; if strong inertia, then conclusion A, but if weak

inertia then conclusion B, etc. It is also important to consider phy-

logeny shape when judging the results. In cases with few widely

separated clades, we recommend doing the analysis separately for

each clade, because the evolutionary process may differ in the dif-

ferent clades, and because the long branches separating the clades

may bias the results if inertia is strong.

Discussion
The standard test of an adaptive hypothesis is to see if the species’

trait values fit the prediction from an optimality model. The idea

behind the adaptation-inertia model is to develop a comparative

method that is consistent with this idea at the same time as it

controls for inertia. At the core of the method is a simple regres-

sion of a “primary” adaptive optimum, �, on one or more predictor

variables, x. If the adaptive hypothesis predicts that the optimum

should depend on x, this can be tested by estimating the regres-

sion of � on x. This regression is not the same as the “evolutionary

regression” of species means, y, on x. The evolutionary regres-

sion is expected to be shallower than the “optimal regression”

when phylogenetic inertia is present. To this extent, not accounting

for inertia could lead one to falsely conclude that the prediction

of an optimality hypothesis is not consistent with the data. Al-

though there are many comparative methods that can account for

phylogenetic correlations between species, the adaptation-inertia

method is the only one that can provide a relatively unbiased es-

timate of the underlying optimal relationship in the presence of

inertia, and estimate how far species lag behind their predicted

optima.

The method provides several refinements in the estimation

of phylogenetic inertia. One of these is that phylogenetic inertia

is estimated jointly with adaptation. Just as an analysis of adap-

tation must control for inertia, an analysis of inertia must control

for the effects of adaptation (Orzack and Sober 2001). If predictor

variables also display phylogenetic effects, adaptation automati-

cally generates phylogenetic effects in the response variables. If

these effects are estimated without controlling for the adaptive

relationship, they may falsely suggest phylogenetic inertia in the

response trait. Accordingly, phylogenetic effects estimated inde-

pendently of the adaptive hypothesis cannot be used to “correct”

for phylogeny when testing this hypothesis.

As reviewed in Blomberg and Garland (2002) and Hansen

and Orzack (2005), various phylogenetic autoregression methods

(e.g., Cheverud et al. 1985; Diniz-Filho et al. 1998), and the mixed-

model method of Lynch (1991) can provide controlled estimates of

phylogenetic effects, although they are rarely used in this way. In

particular, Lynch’s phylogenetic heritability is a logical measure

of phylogenetic effects. Freckleton et al. (2002) and Housworth

et al. (2004) show how it can be estimated when evolution fol-

lows a Brownian-motion process. Phylogenetic heritability is a

measure of phylogenetic effects without regard to the underlying

cause of the effects, which may well be adaptation. In contrast, the

phylogenetic half-life is a measure of inertia relative to adaptation

toward an optimum, and should be used when adaptation involv-

ing stabilizing selection is studied. The phylogenetic half-life may

also be used to estimate general phylogenetic effects by including

only a single, fixed optimum.

Our adaptation-inertia model assumes that the predictor vari-

ables follow a Brownian-motion process. How restrictive is this

assumption? We first note that if there are no phylogenetic effects

in the predictor variables, then there can be no phylogenetic in-

ertia in the response trait, because any adaptation must happen

instantaneously on the relevant time scale. Thus, the adaptation-

inertia model is not suitable if the phylogenetic effect in the
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predictor variable is much weaker than the phylogenetic inertia

in the response trait (relative to the predictor variable). We ex-

pect, however, that the model is robust toward variation in the

strength of phylogenetic effects in the predictors. One could also

develop models in which the predictor variables change as if by an

Ornstein-Uhlenbeck process. Whether and when a such increase

in model complexity will improve inferences about adaptation and

inertia remains to be seen. A more important restriction is the as-

sumption of one-way causation from predictor to response. If the

response trait also influence the predictor variable, we get a qual-

itatively different process. Bivariate Ornstein–Uhlenbeck models

of this type have been considered in Hansen and Martins (1996)

and Martins et al. (2002).

There is a common belief that phylogenetic comparative

methods in general, and the method of independent contrasts in

particular, are robust against violations of their assumptions, ei-

ther in terms of error in the phylogeny or in terms of departures

from the assumed process model. This is supported by several

simulation studies (e.g., Martins and Garland 1991; Martins et al.

2002). It is important to realize that these simulation studies only

consider robustness toward error in the phylogenetic covariance

structure, and not toward error in the mean-structure of the model.

The relative robustness toward error in the variance structure stems

from the robustness of GLS, which is unbiased even when the

variance structure is misspecified. The precision of estimates is

affected, but with the moderate error levels generally considered

in simulation studies, the effects are not dramatic (Rohlf 2001,

2006). In the simulation study most relevant to our model, Mar-

tins et al. (2002) studied the performance of several compara-

tive methods for data generated by correlated stochastic depar-

tures from the fixed optimum of a bivariate Ornstein–Uhlenbeck

process. This model describes correlated evolution of two traits

around a joint optimum, and not adaptation of one trait to the

other. To this extent, it is not surprising that the method of in-

dependent contrasts, which is designed for correlated evolution

(Felsenstein 1985), showed reasonable performance. We reiter-

ate that inertia not only affects phylogenetic covariances, but also

generates a lag in adaptation that can have dramatic consequences

for the interpretation of the results and the estimation of optimal

states. This lag is not accounted for by the method of independent

contrasts.

The time dependency of our phylogenetic correction factor,

� (�t), sheds light on the classical problem of explaining why al-

lometric slopes are typically shallower at lower taxonomic levels.

Martin and Harvey (1985) found that the slope of mammalian

brain-body size allometries are much more shallow on species

and genus levels than on family and order level. There are two

main explanations for this phenomenon. It has been argued to be

a statistical artifact, resulting from higher levels of measurement

error at lower taxonomic levels (e.g., Pagel and Harvey 1988). In

contrast, Riska (1991) argued that real biology is responsible in

that biological “error,” that is biological deviances from the allo-

metric slope, are likely to swamp the effects of measurement error.

In the case of the brain-body size allometry, biological explana-

tions have centered on qualitatively different patterns of evolution

at different levels. For example, it has been argued that body-

size differences at low taxonomic levels are due to changes in

postnatal growth, which do not affect brain growth (Lande 1979;

Riska 1989). Although phylogenetic inertia, or evolutionary lag,

has also been suggested as an explanation (e.g., Burt 1989), it has

not received the attention it deserves. Our model shows that inertia

makes the evolutionary regression slope more shallow when less

time has been available for adaptation. We note that Burt (1989)

and Deaner and Nunn (1999) have proposed methods to test for

phylogenetic inertia based upon how regression slopes from pair-

wise species contrasts change with the phylogenetic distance of

those contrasts.

Simulations and the observed support surfaces from our

examples show that accurate estimates of inertia require many

species. For less than, say, 20–30 species, only a qualitative assess-

ment will be possible. This does not mean that the method should

be avoided with smaller phylogenies, only that conclusions about

inertia and the optimal regression must be made carefully. Even

with smaller sample sizes, estimates of the evolutionary regression

should not be worse than those provided by alternative compara-

tive methods. With smaller datasets it may be prudent to put less

emphasis on the best estimate of the phylogenetic half-life, and

base conclusions on a range of plausible half-lives. Regardless of

method one should bear in mind that the evolutionary regression

may be a downwardly biased estimate of the adaptive optimum.

The OUCH program (Butler and King 2004) has increased

use of the adaptation-inertia method (Hansen 1997; Hansen et al.

2000; Butler and King 2004; Valiente-Banuet et al. 2006; Verdu

and Gleiser 2006; Gomez and Thery 2007; Hipp 2007; Whittall

and Hodges 2007; Labra et al., unpubl. ms.; see also Garland et al.

1993; Butler et al. 2000; Martins et al. 2004; Ord and Martins 2006

for use of Ornstein–Uhlenbeck processes to model residual vari-

ance). A simplified version of the method, allowing only a single

shift in the optimum, can also be fit with the software package

COMPARE (Martins 2004). The inclusion of information-based

model selection has made the method more flexible in evaluat-

ing hypotheses about phylogenetic niche structure (Butler and

King 2004), and in this article we have shown how to analyze

random continuous predictor variables in addition to fixed cate-

gorical ones. We hope that these developments and the associated

software, SLOUCH, will make the approach applicable and avail-

able for use in a wider range of circumstances. An application to

thermophysiological adaptation in lizards is presented.
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Appendix
THE OU-BM MODEL

Let y(t) denote the response trait at time t, and let �(t) denote the

primary optimum of y at time t. We assume that y(t) and �(t) obey

the stochastic differential equations

dy/dt = −�(y − �(t)) + �y dWy/dt,

d�/dt = �� dW�/dt,

where dWy and dW � are independent white noise processes, �

measures the rate of adaptation to the optimum, � y measures the

size of stochastic perturbations of y, and �� measures the size of

stochastic perturbations of �. Differential equations for the first

and second moments of this process can be derived by using Ito’s

formula to obtain differentials for the power terms and then taking

expectations to yield

d E[y]/dt = −�(E[y] − E[�]),

d E[�]/dt = 0,

d E[y2]/dt = −2�E[y2] + 2�E[y�] + �2
y ,

d E[y�]/dt = −�E[y�] + �E[�2],

d E[�2]/dt = �2
� ,

with initial conditions y(0) = y0 and �(0) = �0. The solution to

this set of ordinary differential equations is

E[y](t) = �0(1 − e−�t ) + y0e−�t ,

E[�](t) = �0,

E[y2](t) = �2
� t + ((y0 − �0)2 −

(

�2
� + �2

y

)

/2�)e−2�t

+2
(

y0�0 + �2
� /� − �2

0

)

e−�t + �2
0 + �2

y /2� − 3�2
� /2�,

E[y�](t) = �2
� t +

(

�2
0 − �2

� /�
)

(1 − e−�t ) + y0�0e−�t ,

E[�2](t) = �2
� t + �2

0 .

From these equations we can derive variances and covariances,

Var[y](t) = ((�2
� + �2

y )/2�)(1 − e−2�t )

+�2
� t(1 − 2(1 − e−�t )/�t),

Cov[y, �](t) = �2
� t(1 − (1 − e−�t )/�t),

Var[�](t) = �2
� t.

Because the stochastic differential equations are linear, we know

that the distribution of the two variables at time t will be a bivari-

ate normal (Gard 1988). Therefore the first and second moments

completely specify the distribution. From these moments we can

compute the regression of the trait on the optimum as

E[y|�](t) = �0(1 − e−�t ) + y0e−�t

+ (1 − (1 − e−�t )/�t)(� − �0).

The regression coefficient is (1 − (1 − e−�t)/�t), and because the

true relationship is 1, we see that there is a bias that decreases with

time.

COVARIANCE BETWEEN SPECIES

Hansen and Martins (1996) showed that the covariance between

two species that diverged at time ta and evolved independently

thereafter can be expressed as

Cov[yi , y j ] = Cov[E[yi |ya], E[y j |ya]],

where ya is the trait value of the most recent common ancestor of

species i and j. This assumes that the species evolve independently

after they diverged. The conditional expectations are such that

Cov[yi , y j ] = Var
[

�a

(

1 − e−�ti j /2
)

+ yae−�ti j /2
]

= (1 − e−�ti j /2)2Var[�a] + e−�ti j Var[ya]

+ 2(e−�ti j /2 − e−�ti j )Cov[ya, �a],

where tij is the time separating the two species (assuming they are

both extant). Using the expressions from above we get

Cov[yi , y j ] =
((

�2
� + �2

y

)

/2�
)

(1 − e−2�ta )e−�ti j

+ �2
� ta

(

1 − 2e−�ti j /2(1 − e−�ta )/�ta
)

,
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where ta is time from the base of the phylogeny to the most re-

cent common ancestor of the two species. This covariance has

two components, one due to variation in the ancestral state of the

trait, and another due to variation in the ancestral position of the

optimum. If there are unequal branch lengths from root to the tip

species, the covariance is

Cov[yi , y j ] =
((

�2
� +�2

y

)

/2�
)

(1 − e−2�ta)e−�ti j

+ �2
� ta

(

1 − (e−�tia + e−�t ja)(1 − e−�ta)/�ta
)

,

where tia is time from species i to the most recent common ancestor

of the two.

COVARIANCE BETWEEN RESIDUALS

A GLS analysis requires the use of the covariances between resid-

uals from the regression. That is

Cov[ri , r j ] = Cov[yi − E[yi | �i ], y j − E[y j | �j ]]

Using the expression for the regression, E[yi | � i ], derived above,

we compute

Cov[ri , r j ] =

(

�2
� +�2

y

2�

)

(1 − e−2�ta )e−�ti j

+ �2
� ta

(

1 − e−�ti

�ti

1 − e−�t j

�t j

−
1 − e−�ta

�ta

×

(

e−�tia
1 − e−�t j

�t j

+ e−�t ja
1 − e−�ti

�ti

))

,

where ti means time from the base of the phylogeny to species i.

The special case when all species have the same elapsed time to

the base of the phylogeny is given in the main text.

Measurement variance of the response variables can be added

to the residual variance. Measurement variance of a predictor vari-

able is multiplied by the square of the regression parameter on that

variable and then added to the residual variance.

MODELING THE OPTIMUM

We assume that the optimum is a linear combination of predictor

variables, such that � = b0 +
∑

i bi xi . If each of the xi evolves as

if by an independent Brownian-motion process, then � evolves as

if by a Brownian-motion process with �2
� =

∑

i b2
i �2

xi . If the goal

is to recover the bi through a regression of y on the x’s, then we

use

E[y|x1, x2, . . .] = e−�t ya + (1 − e−�t )
(

b0 +
∑

i
bi xia

)

+

(

1 −
1 − e−�t

�t

)

∑

i
bi (xi − xia),

which is a standard linear regression except that each regression

coefficient is scaled by a function of elapsed time. The parameters

ya and xia are the ancestral (i.e., root) values of the y and x

variables; the terms containing these and the optimal intercept,

b0, are absorbed into the general intercept, k in the main text.

The residual variances of the regression are as given above, but

substituting
∑

i b2
i �2

xi for �2
� .

If the predictor variables are not independent, but evolve as

a multivariate Brownian-motion process with variance matrix M,

then � evolves as if by a Brownian-motion process with �2
� =

bT M1, where b is the vector of regression variables, and 1 is a

vector of ones. To estimate parameters, we would estimate the

variance of the predictor variables (i.e., M), and use this to predict

�2
� .
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