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 NATURAL SELECTION AND RANDOM GENETIC DRIFT

 IN PHENOTYPIC EVOLUTION
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 Revised November 12, 1975

 In discussions of the major features of

 evolution, Simpson (1953) applied popu-
 lation genetic models to the interpretation

 of the fossil record. Most population ge-
 netics theory concentrates on details of

 the genetic system, such as gene frequen-
 cies and recombination rates, which cannot

 be directly observed or inferred from mea-
 surements on polygenic characters. Anal-
 ysis of phenotypic data, particularly fossil
 material, requires models which are framed
 as much as possible in phenotypic terms.

 Starting from a simple formula of quan-
 titative genetics, the methods of popu-
 lation genetics are used here to make a

 theory of the evolution of the average
 phenotype in a population by natural se-
 lection and random genetic drift.

 By analogy with Wright's (1931) adap-

 tive topography for genotypes, Simpson
 (1953) proposed the concept of adaptive

 zones for phenotypes. This is an intuitive
 method of visualizing the dynamics of
 phenotypic evolution in terms of the de-
 gree of adaptation of the various pheno-
 types in a population, it usually being
 thought that natural selection increases
 adaptation. Such qualitative ideas are
 used by most evolutionary biologists and
 the notion of adaptive zones is popular
 among paleontologists. In the present
 paper, the concept of adaptive zones is
 clarified by the construction of an adaptive
 topography for the average phenotype in
 a population. This shows that with con-
 stant fitnesses the average phenotype
 evolves toward the nearest adaptive zone
 in the phenotype space. But if fitnesses
 are frequency-dependent the average phe-
 notype may evolve away from an adaptive

 zone. A method is developed for esti-
 mating the minimum selective mortality
 necessary to produce an observed rate of
 evolution. In examples of the evolution
 of tooth characters in Tertiary mammals,
 these minimum selective mortalities are
 found to be exceedingly small.

 In his paper on the measurement of
 rates of evolution, Haldane (1949) stated
 that "The slowness of the rate of change
 makes it clear that agencies other than
 natural selection cannot be neglected be-

 cause they are extremely slow by lab-
 oratory standards or even undetectable
 during a human lifetime." He briefly dis-
 cussed mutation pressure. Random genetic
 drift due to finite population size is
 another such agency. The relative im-
 portance of natural selection and random
 genetic drift has been debated since

 Wright (1931, 1932) proposed that evo-
 lution is a stochastic process. Fisher

 (1958), for example, believed that random
 genetic drift is insignificant in relation to
 natural selection. The debate continues

 today at a more biochemical level (Lewon-
 tin, 1974). In order to objectively evalu-
 ate the role of random genetic drift in
 macro-evolutionary events, it is necessary
 to use mathematical models to determine
 the rate of evolution which can occur by
 repeated samplings of genetic material in
 a finite population. This paper presents a
 statistical test for the hypothesis of evo-
 lution by random genetic drift, contingent
 on the effective population size. In exam-
 ples from the fossil record, it is found that
 rates of evolution equal to or greater than

 those observed have a significant proba-
 bility of occurring by random genetic drift

 EVOLUTION 30:314-334. June 1976 314

This content downloaded from 73.251.11.157 on Thu, 20 May 2021 16:43:11 UTC
All use subject to https://about.jstor.org/terms



 PHENOTYPIC EVOLUTION 315

 even in very large populations. Models of
 the simultaneous influence of natural se-
 lection and random genetic drift are used

 to evaluate the hypothesis that selective
 thresholds between adaptive zones may be
 crossed by genetic drift, as proposed by

 Wright (1932) and Simpson (1953).

 PHENOTYPIC SELECTION AND ADAPTIVE

 TOPOGRAPHIES

 The concept of an adaptive topography

 was introduced by Wright (1932) to il-
 lustrate a basic principle of the evolution

 of gene frequencies: with constant geno-

 typic fitnesses and random mating, selec-
 tion causes the gene frequency at a locus
 to change in such a way that the mean
 fitness of individuals in the population

 always increases until at equilibrium it
 reaches a maximum. We can thus think

 of a landscape where the height represents

 the mean fitness in the population and the
 other dimensions are the gene frequencies
 at the various loci. The distribution of
 genotypes in the population is represented
 by a point on the landscape and Wright's
 principle tells us that selection causes the
 population to evolve along the surface
 toward the nearest hill or adaptive peak
 until it has reached a local maximum on
 the landscape. The equilibrium compo-
 sition of the population is that which maxi-
 mizes the mean fitness, subject to the re-
 striction of Mendelian inheritance. Wright
 (1932, 1949) stressed that there may be
 many peaks and valleys in the adaptive
 landscape (due to epistatic interactions in

 the fitnesses of genes under stabilizing
 selection).

 The value of an adaptive topography is
 that it is easily visualized and so makes
 the evolutionary dynamics of the popu-
 lation intuitively clear. It tells us, for
 example, that with constant genotypic fit-
 nesses there is no inertia or overshoot of
 adaptive peaks. It relates the direction
 and rate of evolution to current gene fre-

 quencies and the local geometry of the

 adaptive landscape. With p as the fre-

 quency of an allele and W as the mean

 fitness, Wright's formula for the change
 in gene frequency in one generation is

 ,AP=O (- P) aw
 2W OP

 OW/Op is a change in W when changing
 the frequency of an allele, holding fixed
 the relative frequencies of all other alleles
 at the locus (Wright, 1949). The effects
 of frequency-dependent genotypic fitnesses
 and finite population size have also been

 investigated by Wright (1942).

 The fitness used here is absolute fitness

 when population numbers are density-
 independent and relative fitness when

 the population size is density-dependent
 (Wright, 1949). Both of these types of
 fitness are related to the survival of the

 population. In a density-independent pop-
 ulation, maximizing the mean absolute
 fitness maximizes the population size, as

 N(t + 1) = W N(t). In a density-depen-
 dent population, where N is constant and

 W = 1, maximization of the mean relative
 fitness minimizes the selective mortality

 or phenotypic load on the population
 (Wallace, 1970). This load is an impor-
 tant parameter in population survival be-
 cause if the total selective mortality ex-
 ceeds the reproductive capacity of the
 individuals, the mean absolute fitness

 must fall below 1, leading to eventual ex-
 tinction. The following description will
 apply to both the absolute fitness in a
 density-independent population and the
 relative fitness in a density-dependent
 population.

 Simpson (1953) discussed at length the
 idea of an adaptive topography for pheno-

 typic characters, which he called a selec-

 tive surface or adaptive zone, in analogy
 with Wright's adaptive topography for

 gene frequencies. Simpson stated that
 physical and biological factors created

 many different adaptive zones or local

 maxima in fitness in the phenotype space.

 He applied the concept of adaptive zones

 to various taxonomic levels from sub-

 species to phyla. Van Valen (1971) dis-
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 316 RUSSELL LANDE

 cussed adaptive zones in relation to the
 evolution of the orders of mammals. These
 concepts may be clarified by constructing
 an adaptive topography for the average
 phenotype in a population. I consider
 each population in each environment to
 be evolving on an adaptive surface deter-
 mined by ecological conditions. Local
 maxima in the adaptive topography are
 equivalent to possible adaptive zones or
 ecological niches for a population. Clus-
 tered series of peaks in the adaptive land-
 scape (occupied by populations close to-
 gether in the phenotype space) may be
 thought of as adaptive zones at higher
 taxonomic levels.

 The adaptive topography for pheno-
 types.-At first it is assumed that the
 phenotypic fitnesses are constant and that
 the population size is infinite. The deter-
 ministic change in the average value of
 a phenotypic character in response to se-
 lection is given by the following equation
 from quantitative genetics which describes
 a population with discrete generations
 (Falconer, 1960):

 Z2(t) = 2(t + 1)-z(t1

 =[2w (t)- Z(t) ] h2. 1)

 Here 2(t) is the mean value of the char-
 acter in generation t before selection, and
 zw (t) is the mean after selection but before
 reproduction. [zw(t) - 2(t) ] is the selec-
 tive force in generation t; h2 is the re-
 alized heritability of the character, which
 is determined by the genetic system, the
 breeding structure of the population and
 the environment, and may change dur-
 ing the course of evolution.

 The distribution of phenotypes, z, in
 generation t before selection will be de-
 noted by p(z,t). The average phenotype
 before selection is

 z(t) = fzp(z,t) dz. (2)

 Letting the fitness of an individual with
 phenotype z be W(z), the mean fitness
 of individuals in the population is

 W= p(z,t)W(z) dz (3)

 and the average phenotype after selec-
 tion is

 2tv (t)= zp(z, t) W(z) dz. (4)

 Most commonly, phenotypic characters
 have a normal distribution. Non-normal
 distributions for continuously varying
 characters can often be transformed to a
 normal distribution by a simple change in
 the scale of measurement. The phenotype
 distribution in generation t before selec-
 tion may then be written:

 p(z,t) = exp{ [ (5)
 V2 7o-2 2o-2f

 Co2 iS the phenotypic variance which is as-
 sumed to be independent of the mean,
 Z(t). It is usually (but not always) pos-
 sible to find a scale of measurement on
 which the phenotype distribution is normal
 and the variance is independent of the
 mean (Falconer, 1960). Simpson (1953),
 Bader (1955), Guthrie (1965) and Van
 Valen (1969) have noted that the vari-
 ability of morphological characters within
 a lineage is often roughly constant through
 evolutionary time. Usually the measure of
 variation which is nearly constant is the
 coefficient of variation, ov/2(t), so that
 transformation of the data to natural loga-
 rithms will satisfy the assumption that o-2
 is independent of 2(t). In cases discussed
 by Simpson (1953) and Van Valen (1969)
 where the variance does not remain con-
 stant, a more complex transformation may
 succeed. But the ultimate justification for
 this assumption must come from the data
 itself.

 Using (2) through (5) we note that the
 change in the mean fitness of the popu-
 lation, W, with respect to a change in the
 average phenotype, z(t), is:

 aw = PJ df (Z t)

 = f z 2(t)p(Z, t) W(z) dz
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 PHENOTYPIC EVOLUTION 317

 This relation allows the basic dynamic
 equation for the average phenotype (1)
 to be re-expressed in the form

 _ _ _ _ _ O W & ln (7)
 W at (t) 02 (t) (

 Observe the similarity between this equa-
 tion and Wright's formula for the change
 in gene frequency given above. This for-
 mula shows that with constant phenotypic
 fitnesses and infinite population size, the
 evolution of the average phenotype in re-
 sponse to selection is always in the direc-
 tion which increases the mean fitness in
 the population.

 The actual phenotype of an organism is
 composed of many inter-related characters.
 If these characters follow or can be trans-
 formed to a multivariate normal pheno-
 type distribution, a rotation of axes can
 be performed to find linear combinations
 of the characters which have no genetic
 correlations and the above analysis can, in
 principle, be applied to these genetically
 independent characters.

 The adaptive zones for phenotypes may
 thus be pictured as a landscape similar to
 Wright's adaptive topography. The height
 of the landscape or "level of adaptation"
 (Wright, 1949) is the mean fitness in the
 population and the other dimensions are
 the average values of phenotypic char-
 acters. The average phenotype in the pop-
 ulation is represented by a point on this
 landscape. Equation (7) tells us that the
 average phenotype moves into the nearest

 adaptive zone or area of high mean fit-
 ness. The rate of evolution is determined

 by the local geometry of the adaptive zone

 (the logarithmic slope [0 ln W]1/ [0(t)])
 and the amount of heritable variation,
 h2o-2. The stable equilibria for the average
 phenotype occur at the highest level of

 adaptation in each adaptive zone, where
 the mean fitness is at a local maximum.

 Even in a fluctuating environment, where

 the adaptive zones change with time, the

 basic principle is still valid, as the average

 phenotype always moves toward the high-

 est level of adaptation in the nearest adap-
 tive zone in any given generation, pro-
 vided that h2o2 is not zero.

 Thus, Simpson's (1953) intuitive notion
 of adaptive zones for phenotypes was cor-
 rect. His concept has been made more
 precise by finding that the level of adapta-
 tion is the mean fitness of individuals in
 the population and that the other dimen-
 sions of the adaptive zones are the average
 values of phenotypic characters in the
 population.

 Frequency-dependent selection.-For

 some characters, the phenotypic fitnesses
 change with the frequencies of the differ-
 ent phenotypes because of interactions
 among members of the population. The
 fitness of any individual phenotype is then
 a result of two components: a frequency-
 independent part imposed by the environ-
 ment, including physical and biotic factors,
 and a frequency-dependent part which
 depends on the composition of the popu-
 lation. For example, the fitness of indi-

 viduals with a certain jaw size may be
 frequency-dependent if there is speciali-
 zation on different food items according
 to jaw size. Characters involved with mat-
 ing success may also be selected in a
 frequency-dependent fashion. Predators
 may exert some frequency-dependent se-
 lection on characters of their prey.

 To investigate the dynamics of such
 systems, we look at the change in the
 mean fitness of individuals in the popu-
 lation due to a change in the average
 phenotype.

 -+ ap(z,t) W (z) dz
 Jd() a(t)

 ?Jp (z,t d_W(z) dz
 O ( t)

 -<:2 [Zw (t) - z(t)]

 + p(z,t) d2 (t() dz. (8)

 This allows the basic equation (1) for
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 318 RUSSELL LANDE

 the evolution of the average phenotype
 to be expressed as

 Az (t)

 =khoC2(-a f )-J p(Z,t) ()Z) dz).

 (9)

 The first term on the right is identical

 to the expression for the adaptive zones
 in equation (7). The integral in the

 second term is the average of frequency
 dependent changes in fitness for the phe-

 notypes, aW(z)/aZ(t), weighted by the
 frequencies of the phenotypes, p(z,t).
 The second term thus represents an addi-

 tional force on the evolution of the average
 phenotype caused by frequency-dependent
 selection in the whole population. A simi-
 lar equation was derived by Wright (1942)
 for the change of gene frequency with
 frequency-dependent fitnesses.

 The first observation to be drawn from
 equation (9) is that some forms of fre-
 quency-dependent selection will not alter
 in any way the evolution of the average
 phenotype described above for constant
 fitnesses, because the various frequency-

 dependent effects in the population may
 cancel each other so that

 J p(z,t) 0 T()) = 0.

 This would occur when the function
 aW(z)/dZ(t) is antisymmetric about z(t),
 for example:

 1. when there is symmetric competition
 with respect to the character; that is, for
 every given pair of phenotypes, each com-
 petes equally against the other.

 2. if mating success is correlated with

 the frequency of the phenotype in the

 population (as with the rare male mating

 advantage, Petit and Ehrman, 1969).

 3. when predation rates are correlated

 with phenotypic frequency (as with pred-

 ators using a search image).

 The evolution of the average phenotype

 in the population will then be toward the

 highest level of adaptation in the nearest
 adaptive zone and the mean fitness in the
 population will be maximized.

 The most interesting cases are those in

 which the various frequency-dependent
 effects on fitness do not cancel each other.
 This will occur when there is asymmetrical
 competition between phenotypes for mates
 or resources, or if there is frequency-
 dependent predation on one extreme of
 the phenotype distribution (similar to ar-
 tificial selection). The average phenotype
 will then evolve away from the nearest
 adaptive zone and the mean fitness in the
 population will decrease. When A/ (t) = 0
 in equation (9), we find that at evolu-
 tionary equilibrium the average pheno-
 type, z (t), rests at a position where a
 small change in z(t) produces some change
 in the mean fitness, W.

 dW = f p(z t) aW(z) dz

 at equilibrium. (10)

 Thus, the average phenotype at equilib-
 rium is below the highest level of adapta-
 tion in the adaptive zone. The evolution
 of such a character is in this sense mala-
 daptive. The magnitude of maladaptation
 is the difference between the highest level
 of adaptation and the equilibrium level
 actually achieved. This depends on the
 form of the frequency-dependent and fre-
 quency-independent components of selec-
 tion. If the frequency-dependent compo-
 nent of selection is intense, the population
 may evolve far out of its adaptive zone
 and become rather poorly adapted to its
 ecological niche (Huxley, 1938). In some
 situations an equilibrium may not exist
 and the population may evolve away from

 its adaptive zone until it becomes extinct
 (Haldane, 1932).

 For example, consider a character medi-

 ating a dominance hierarchy. Suppose

 that the individuals with the larger char-

 acter values had a selective advantage in

 intraspecific competition for mates, re-

 sources or predator avoidance. If the
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 average value of the character in the popu-
 lation were increased, the component of

 fitness due to intraspecific competition

 would decrease for any individual with a
 given character value because it would be

 competing against an increased proportion
 of the population with larger character

 values; so dW(z)/&2(t) < 0 for all values
 of the character and from (10) at equilib-

 rium dW/&Z(t) < 0. The average value of
 the character at evolutionary equilibrium
 would, therefore, have been larger than
 that which was most adaptive: the popu-
 lation would have been enriched with

 individuals with large character values to

 the point where the mean fitness of the
 individuals would have decreased. Such

 maladaptive evolution has been reviewed
 with a great many examples by Huxley
 (1938). As characters mediating domi-

 nance hierarchies and other forms of

 asymmetrical, frequency-dependent selec-
 tion are not uncommon, maladaptive evo-
 lution must be a fairly frequent event,

 and may play a significant role in some
 extinctions.

 THE MINIMUM AMOUNT OF NATURAL

 SELECTION IN OBSERVED EVOLUTIONARY

 EVENTS

 Two measures of the rate of morpho-
 logical evolution were suggested by Hal-
 dane (1949), the proportional rate of
 change in the average phenotype, and the
 absolute rate of change in units of the
 phenotypic standard deviation. The rela-
 tion of the rate of morphological evolution
 to the phenotypic variation is a necessary
 feature of any dynamic model of evolution.
 It can be seen from the dynamic equations
 (7) and (9) that in addition to the pheno-
 typic variance, the form of selection and
 the heritability of the character are also
 important in determining the rate of evo-
 lution of the average phenotype. Haldane
 (1949) compared rates of morphological
 evolution in several groups of animals and
 his measures have been applied to other
 groups. Using the classical dynamic model

 of one locus with two alleles, Van Valen

 (1964) and Hayami and Ozawa (1975)
 have considered the selective value of a
 mutant allele which would produce ob-
 served rates of evolution. I am not aware
 of any calculations of the amount of nat-

 ural selection necessary to produce ob-
 served rates of evolution in quantitative
 (polygenic) characters on a geological time
 scale. (Van Valen (1963) has done this
 for age groups within a population.)
 Though it is known that the amount of
 natural selection needed for macro-evolu-
 tionary events is small, it is of some in-
 terest to have quantitative measures of
 the minimum amounts of natural selec-

 tion necessary to explain these phenom-
 ena, assuming that the changes are genetic
 and that random genetic drift was not
 involved.

 The form of selection which gives the
 minimum amount of selective mortality for
 a given change in the average phenotype
 is truncation selection which is used in
 artificial selection experiments where a
 fixed proportion of the most extreme de-
 viants in one direction are not allowed
 to reproduce. All phenotypes have a fit-
 ness of one, except those beyond the trun-
 cation point which have a fitness of zero.
 This is a form of frequency-dependent

 selection, with W constant, as the trun-
 cation point is always a fixed distance
 from the average phenotype. Equation
 (9) can thus be used to determine what
 proportion of the population must be
 culled each generation to yield a given
 rate of evolution. Since W is constant

 OWIOZ(t) = 0. If b is the number of phe-
 notypic standard deviations between the
 average phenotype and the truncation
 point, the truncation point is at z(t) - bo
 and

 dW (z) = 8{z-[z(t)-b ]
 0~ ( t)

 This is the Dirac delta function which is
 zero everywhere except at the truncation
 point where it is infinite. The positive
 or negative sign is taken depending on
 whether the small or large deviates are
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 320 RUSSELL LANDE

 selected against. This function has the
 property that

 J p(z,t)8{z -[Z(t)- bo]} dz

 = p [Z(t) - bo-t]

 = (1/V2i.)e-b2/2

 For weak truncation selection (W-1) on
 a normally distributed character, equation
 (9) becomes

 h2o- _b/ ?zt e-b2/2, (11)
 V27

 the sign being opposite that of b.
 It is frequently observed in long-term

 directional selection experiments on quan-
 titative characters that the heritability,
 h2, and the phenotypic variance, o-2, re-
 main nearly constant when the mean of
 the character is changed by a few to sev-
 eral phenotypic standard deviations in
 either direction (e.g., Mather and Harri-
 son, 1949; Winter, 1929; Robertson and
 Reeve, 1952). It may be supposed that
 in natural populations, in which evolution
 is much slower than in artificially selected
 populations, that there would be ample
 time for mutations to accumulate and re-
 combine and the amount of heritable vari-
 ation would usually be equilibrated near
 some constant value, if the character is
 under polygenic control.

 If h2 and cr2 are constant, the total
 morphological change after t generations
 can be written as z = tAZ(t). After di-
 viding by oc and taking absolute values,
 using (11) this becomes

 IZ_ h2t -b2/2

 and

 b= 4 -2ln( V2T h ) (12)

 From an estimate of b, the proportion of
 the population culled each generation can
 be found in tables of integrals of the
 standard normal distribution. This for-
 mula will be used later to determine the

 minimum selective mortalities needed to
 produce some actual evolutionary events.

 When several characters are considered
 simultaneously the minimum amount of
 natural selection could be estimated as
 mentioned above if the genetic correla-
 tions between the characters are known.

 THE ROLE OF RANDOM GENETIC DRIFT

 IN PHENOTYPIC EVOLUTION

 Wright (1931, 1932) pointed out that
 random genetic drift due to finite popu-
 lation size may be an important factor

 in evolution. He developed an elaborate

 theory of evolution based on the inter-
 action of natural selection, migration and
 random genetic drift in complex genetic
 systems. Genetic drift causes random
 changes in gene frequencies which can
 induce a population to move out of an
 adaptive zone against a gradient of selec-
 tion and occasionally to enter a new adap-
 tive zone which may contain a higher level
 of adaptation. Genetic drift can thus be
 thought of as a process of random explo-
 ration of the adaptive zones in a tem-

 porarily maladaptive way, on the chance
 that a new phenotype may be found which
 will be better adapted.

 Since Wright first suggested random ge-
 netic drift as a mechanism of evolutionary
 change, paleontologists have debated its
 importance in the interpretation of the
 fossil record. Simpson (1953) discussed
 the possible role of genetic drift in the
 evolution of morphological characters. He
 frequently refers to a conceptual model of
 adaptive zones within which stabilizing
 selection operates and between which there
 is a threshold of low adaptive value. Once
 the threshold has been crossed, rapid evo-
 lution into the new adaptive zone ensues;
 Simpson cites as examples the radiation of
 the lungfish, and the evolution of hypso-
 donty in the horse which involved crossing
 an adaptive threshold between the brows-
 ing and the grazing habits. Random ge-

 netic drift may be an important factor in

 the crossing of thresholds between adap-

 tive zones for phenotypic characters.
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 Eldredge and Gould (1972) emphasized
 the application of the model of geographic
 speciation (Mayr, 1963) to the interpre-
 tation of fossil data. They claim that
 species formation typically occurs in pe-
 ripherally isolated populations exposed to
 new environments and suggest that these
 isolates may be small enough for stochastic
 processes to be important in their evolu-
 tion. Such newly evolved types may even-
 tually expand their range and replace the
 original large population.

 These ideas may be summarized in
 terms of adaptive zones as follows. The
 evolution of finite populations is expected
 to proceed both by the deterministic forces
 of selection and by random genetic drift.
 The adaptive zones may vary with the
 environment, both in time and space, so
 that an isolated population may be se-
 lected in a way that corresponds to moving
 from one adaptive zone to another in the
 main range. It may then re-invade the
 main range and replace the original type
 if there is sufficient reproductive isolation.
 Evolution by genetic drift does not de-
 pend on such a fortuitous relationship
 between the adaptive zones in different
 environments. Genetic drift may thus be
 important in opening evolutionary path-
 ways not allowed by the forces of natural
 selection alone.

 With a phenotypic model it is possible
 to reappraise the above theories of evolu-
 tion by finding what population sizes and
 structure of adaptive zones would allow
 observed rates of morphological evolution.
 If the changes are assumed to be genetic,
 statistical tests can be devised to determine
 whether an evolutionary event might have
 been produced by random genetic drift or
 whether natural selection was involved
 either in promoting or retarding change.
 The limiting case of no selection is par-
 ticularly important as a test of the power
 of random genetic drift. If the hypothesis
 of evolution by random genetic drift can-
 not be consistently ruled out from fossil

 evidence, there would be no basis for sup-
 posing that phenotypic evolution is purely

 a result of natural selection, and random
 genetic drift would emerge as a potentially
 significant motive force in evolution.

 The operation of random genetic drift
 cannot be demonstrated from fossil ma-
 terial because any pattern of change can
 be caused by a suitable scheme of migra-
 tion or fluctuating selection. An answer-
 able evolutionary question is whether
 random genetic drift is potentially im-
 portant in phenotypic evolution. A first
 approach is to determine how small the
 effective population size must be to have
 a significant chance of producing various
 observed morphological changes by ran-
 dom genetic drift. Statistical tests of this
 sort would be most interesting for events
 where the adaptive significance of a phe-
 notypic change is uncertain.

 The existence of morphological trends
 is often used as evidence of natural selec-
 tion. However, a trend does not nec-
 essarily imply that natural selection
 promoted the entire evolution. Random
 genetic drift without selection will oc-
 casionally give the appearance of a trend.
 Random genetic drift between adaptive
 zones could also produce a trend if the
 adaptive landscape consisted of a series
 of peaks of increasing height. Various
 hypotheses concerning the existence of a
 selective threshold between two adaptive
 zones which might have been crossed by
 random genetic drift can also be examined.
 The simplest models of the combined in-
 fluences of natural selection and random
 genetic drift are constructed in this sec-
 tion to investigate their relative roles in
 the evolution of phenotypic characters.

 Genetic drift in one adaptive zone.-
 Again it will be assumed that both h2 and
 o.2 are constants. The heritable variation
 h2o2, is thus also considered constant.
 This is not strictly true because in a finite
 population genetic drift will have a sto-
 chastic effect on the genetic variance. If
 there is mutation or other variance pro-
 ducing and preserving mechanisms to

 counteract the loss of genetic variance
 from stabilizing selection and genetic
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 drift, then the genetic variance will fluc-
 tuate around some positive value. For a
 given effective population size, N, and
 strength of stabilizing selection, the heri-
 table variance may be considered roughly
 constant as indicated by observations
 given above.

 To describe the effects of stabilizing
 selection, a Gaussian (normal) fitness
 function will be used. This choice is made
 because it is mathematically convenient
 and because any smooth fitness function
 can be closely approximated by a Gaussian
 function in the vicinity of the optimum.
 The fitness of an individual with a pheno-
 type which deviates from the optimum
 phenotype by an amount z is then

 2w2

 where w is a measure of the "width" of
 the fitness function. (With weak selection
 (W2 > 0-2) this is equivalent to the quad-
 ratic deviations model W(z) = 1 - z2/2w2.)
 The phenotype distribution is assumed to

 be normal as in equation (5). Then W cc
 exp{-Z(t)212 (W2 + -2) } and the width of

 the adaptive zone is VW2 + cr2.
 Using these forms the average pheno-

 type after selection is

 w2 (t)
 ZW(O)-w2+ o-2

 Substituting this into expression (1) for
 the deterministic change in the average
 phenotype gives

 z(t?+1)=(- w2?oU2 Z(t). (14)

 The choice of normal forms for the char-
 acter distribution and the fitness function
 has resulted in a linear force which restores
 the average phenotype to the optimum.
 This is the idealized situation discussed
 by Simpson (1953).

 The stochastic effects due to finite pop-
 ulation size may be treated as follows.
 The ordering of events in each generation
 is reproduction, selection and random

 sampling. N individuals are drawn at
 random from the selected population to
 constitute the parents of the next genera-
 tion. The sampling distribution of the
 average phenotype must be determined
 from this process. It is assumed that se-
 lection on the heritable variations is not
 strong (h2O2 < w2) so that in the selected
 population the heritable variations are
 distributed normally with variance ap-
 proximately k2o2. The average phenotype
 in the offspring of random samples of N
 selected individuals, z(t+ 1), is then nor-
 mally distributed with mean

 ( Mo-2N

 1w2 + C2)z(t)

 and variance approximately h20-2/N. The
 conditional distribution of z(t + 1) given
 z(t) is thus

 f [z(t + 1) 1Z(t)] = \/21Th2o-2/N

 + 12 hO_2 INt

 expL [ )( w2 + 2 ]
 (15)

 The probability distribution of the aver-
 age phenotype, denoted as 1 [z(t)], can
 be determined from the recursion relation

 ?Qz(t + 1)]

 (16)

 1 [z(t)] will always be normal since f
 is normal and the initial distribution,
 <P[2(O)], is a Dirac delta function, and
 thereafter a convolution of normal distri-
 butions is itself normal. Hence c1 is com-

 pletely specified by its mean, ZO(t), and
 variance, crqO2 (t). Since this is a linear
 Gaussian process, the dynamic equations
 are easily found to be

 z?(tEl)=(l- +:+ 112)z?t2(17a)

 o-02(t + 1) -12 _ 2 )2 2_t2

 ?h20-2/N. (17b)
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 FIG. 1. An example of the stochastic evolution of the average phenotype in a finite population
 under stabilizing selection (equation 18). The shape of the adaptive zone is indicated by the dashed
 line of W. The optimum is arbitrarily set at zero and w/o = 10. The initial position of the average

 phenotype at t = 0 is z(0) = -5o. The effective population size is N = 50 and the heritability of
 the character is h2 = .2.

 Equation (17a) for the expected value of
 the average phenotype is identical to the
 deterministic equation (13) for the aver-
 age phenotype. Solving these equations
 using h2or2 < w2 gives

 I h2a2 t

 z?t (O) e- (W2+r2J (18a)

 o02(t) - w2+oI2(_ - e2(W22)t) (18b)

 and

 exp =(t)

 * F(t2) 0-2(t) ] (18c)

 An example of the stochastic evolution
 of the average phenotype is given in Fig.

 1. In this case, where there is only one

 adaptive zone for the phenotypic char-
 acter, the probability distribution for the
 average phenotype eventually reaches a
 stationary distribution with the most prob-
 able position at the optimum and a vari-
 ance of (W2 + a2) /2N.

 The hypothesis of selective neutrality.-

 The case of no selection is of special in-
 terest as it gives the maximum rate of
 evolution which can be produced by ran-
 dom genetic drift. After t generations in
 the absence of selection, the probability
 distribution of the average phenotype,
 1 [Z(t)], is normal with expected value

 at the starting point zo(0) = 0(O) = 0 and
 variance o-2(t) = h2or2t/N. This can be
 used to test the hypothesis of selective
 neutrality, contingent on the effective pop-
 ulation size, N. The effective population
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 size at which there is a 5% chance of ran-
 domly drifting a distance at least z in
 either direction in t generations, N*, is
 obtained when the observed magnitude of

 morphological change Izl = (1.96)o-r(t).
 Squaring both sides and solving for N*
 yields

 N* = (1.96)2h2t (Z/O-) 2 ~~(19)

 Thus if N > N* the neutral hypothesis
 can be rejected with 95% confidence. This
 test will be applied to some actual evo-
 lutionary events in the last section.

 An analogous formula could be derived
 for the consideration of many characters
 evolving simultaneously, after accounting
 for correlations between the characters.

 Genetic drift between adaptive zones.-
 It is also important to consider random

 genetic drift from one adaptive zone to
 another (the interaction of selection and
 drift), as this is a fundamental mechanism
 of evolution in the theories of Wright,
 Simpson, and Eldredge and Gould. This
 is most easily investigated through the use
 of diffusion equations (Kimura, 1964).
 It can be noted that in the special case of
 a Gaussian fitness function, the solution
 for the transition probability density func-
 tion for the average phenotype, (1[Z(t)]
 as in equations (18) also satisfies the dif-
 fusion equation

 a(iD a (4)+ a2
 at - az(t) (M 2)?' aZ(t)2V),

 (20)

 with the natural boundary conditions
 (D(-oo) =(+oo) = 0 and moments

 M=-w2 + 2Z(t),

 and

 V-h2o-2/N. (21)

 This is an Ornstein-Uhlenbeck process,
 first studied as a model of Brownian mo-

 tion (Uhlenbeck and Ornstein, 1930).
 The first moment, M, is equal to the de-

 terministic change in the average pheno-

 type, At(t), given by equation (14) and
 the second moment, V, is the sampling
 variance of the average phenotype (equa-
 tion 15). When selection is not strong the
 general evolutionary process of selection
 in a finite population can be approximated

 by a diffusion process with M = AZ(t),
 the deterministic change in the average
 phenotype, and V = h2o-2/N, the sampling
 variance of the average phenotype. A
 similar approximation is usually made for
 the stochastic change in gene frequency
 (Crow and Kimura, 1970).

 The amount of stochastic exploration of

 the adaptive landscape by the average
 phenotype in a finite population is revealed
 by the equilibrium distribution, 1 [z ( cc)].
 With constant phenotypic fitnesses the
 expression (7) for the adaptive topography
 may be employed. In the simplest case
 where h2 is treated as a constant, Wright's
 formula for the equilibrium distribution is

 1 [Z(c)]cc I exp{f 2 dZ (t)

 oc exp(f 2N a nWd4 t)

 zK( oo )]cc W2V. (22)

 The equilibrium distribution of the aver-
 age phenotype is directly related to the

 adaptive topography, W, and the effective
 population size, and this result is the same
 for a multivariate phenotype. It shows
 that the amount of exploration of the
 adaptive landscape is reduced exponen-
 tially in proportion to twice the effective
 population size.

 Diffusion equations can be used to gain
 some idea of the amount of time required
 to drift from one adaptive zone to another.
 The most time consuming part of this
 process is the movement out of the first
 adaptive zone against the force of natural
 selection. Once the threshold or valley
 between two adaptive zones has been
 crossed, the movement of the average phe-
 notype into the new adaptive zone is rela-
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 tively rapid. It should therefore be in-
 formative to use the simple Gaussian
 fitness function (11) to examine the ex-

 pected time for the average phenotype to
 drift a certain distance, z, in either di-
 rection away from the adaptive peak at

 z = 0, starting from some initial position,
 -z < z(O) < +z. This expected "first pas-
 sage time" is written as T[-z,zIZ(O)] and
 is measured in units of generations. It is

 obtained from an ordinary differential

 equation (Darling and Siegert, 1953).

 k2o-2 d2T[-z,zlZ(O)1 ( h2o2
 2N dz(O)2 W2 + r2/

 * W() dT -,z I )Z Z(0) 1 -, (23 )

 with the absorbing boundary conditions

 T(-z,zl-z) = T(-z,zlz) 0 O. The solution
 to this equation is

 T[-z,zl(?) I

 N co
 C2 [Zi Z(0)2i], (24)
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 where c2 = 1 and

 ( N 4i
 C242 = C2i w2 _ j 2 (2i + 2 ) (2i + 1)

 When the average phenotype is initially
 at the adaptive peak, z(0) = 0, any net
 change away from the initial position is
 against the force of selection. This is de-
 picted in Fig. 2. The expected first pas-

 sage time in generations multiplied by the

 heritability of the character, h2T(-z,zIo),
 is plotted as a function of the distance
 moved away from the adaptive peak, for

 different values of the other parameters.
 These are the effective population size, N,
 and the width of the fitness function,
 which is expressed relative to the standard
 deviation of the character in the popula-
 tion as w/o-. It can be seen that a very
 small amount of stabilizing selection can
 cause a tremendous increase in the amount
 of time taken to explore the adaptive zone
 by genetic drift, and so to cross any thresh-
 old into another adaptive zone which
 might exist.

 Some care is needed in the interpre-
 tation of the expected first passage times
 for two reasons. First, it should be noted
 that the heritability, h2, is partially de-
 pendent on the effective population size,
 N, because small populations maintain
 less genetic variation due to the loss of
 genetic variation from random genetic
 drift at a rate of 1/2N per generation
 (Crow and Kimura, 1970). Second, the
 full distribution of first passage time is
 quite skewed so that the most probable
 time of first passage is considerably less
 than the expected time. This can be seen
 explicitly in the case of no selection where
 the full distribution of first passage time
 may be obtained analytically (Darling
 and Siegert, 1953). The distribution of
 first passage time without selection is
 plotted in Figure 3 in units of the expected
 first passage time

 T(-Z,ZI0) = N (Z/cO)2 = T

 without selection. (25)

 1.0-

 0.9

 0.8

 ' 0.6-

 ., 0.5-

 .0.4 -

 0.3-

 0.2-

 0.1 I

 0.0 I I I

 0 0.5T T 1.5T 2T 2.5T 3T

 first passage time (t)

 FIG. 3. Probability distribution of the time in
 generations, t, for the average phenotype in a
 population to move a distance z in either direc-
 tion by random genetic drift in the absence of
 selection. The time is scaled in units of the
 expected first passage time T = T(-z,zjo) =
 (N/h2) (z/a)2.

 The most probable time of first passage

 is close to gT; the standard deviation of
 the first passage time is x/ T. In Fig. 2
 (no selection), which is on a log scale,
 95% confidence intervals would span about
 one order of magnitude. With selection,
 the confidence intervals should be even
 wider; but the distributions of first pas-
 sage time with selection have not been
 derived. For the present purposes, it
 should suffice to know that the distri-
 butions of first passage time are strongly
 skewed and have a wide dispersion around
 the expected time. The graphs of the
 expected first passage times in Fig. 2
 should nevertheless be useful in deter-
 mining what order of magnitude of effec-
 tive population size would readily allow
 the crossing of a threshold between adap-
 tive zones by random genetic drift.

 The hypothesis that the population was
 initially under stabilizing selection and
 then drifted across a threshold into another
 adaptive zone cannot be considered when
 the threshold is less than about 2o away
 from the optimum, because a significant

 fraction of the population overlaps into
 the next adaptive zone, which is disruptive
 rather than stabilizing selection.
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 APPLICATION OF THE MODELS TO

 FOSSIL POPULATIONS

 Before entering into the analysis of

 some actual evolutionary events, it is nec-
 essary to consider methods of estimating
 the parameters involved in the models.
 For the calculation of the minimum selec-
 tive mortality per generation required to
 produce a certain phenotypic change as-

 suming no genetic drift (formula 12) and
 the calculation of the effective population
 size for testing the hypothesis of no selec-
 tion (formula 19), estimates of the param-
 eters z/o-, t and h2 are needed.

 z/o- is the amount of morphological
 change in units of phenotypic standard
 deviations. To estimate this one must
 have data on the mean and variance of
 the character from a lineage in two time
 horizons. The populations must be checked
 for homogeneity of variances and if nec-
 essary the data should be transformed to
 render the variance independent of the
 mean. Since these are intra-population pa-
 rameters, it is best to avoid pooling sam-
 ples from different localities or strata.
 When this is unavoidable, gross bias in
 the estimate of oc may be corrected by
 comparing the coefficient of variation with
 that of related species. In the construc-
 tion of the phylogeny some attempt should
 be made to establish that the apparent
 changes in time are not artifacts of geo-
 graphical variation or racial migration,
 or spuriously high rates of evolution may
 result. If the phenotypic changes in-
 volved are small it may be difficult to ex-
 clude the possibility that they were
 largely a developmental response to a
 changing environment. The models are
 best suited for the analysis of large pheno-
 typic changes, which are likely to be
 genetic.

 The nuwilber of generations between the
 samples, t, is estimated from the absolute
 time for the event and the demographic
 generation time of the population. The
 heritability of a character, h2, is the de-
 gree of phenotypic resemblance between
 parents and offspring (Falconer, 1960)

 and measures the capacity of the popu-

 lation to respond to selection (see equation

 1). With fossil material the information
 on the generation time and the heritability
 can only be obtained by comparison with
 related living populations. The confidence
 which can be placed in such estimates
 will be greatest when it can be demon-

 strated that some predictive relationship
 exists among living populations, for ex-
 ample if the heritability of homologous
 characters is about equal in all popula-
 tions, or if the generation time can be
 inferred from body size. Following are

 some examples of the evolution of mam-
 malian skeletal characters where it is pos-
 sible to obtain at least rough estimates
 of all the necessary parameters.

 The best preserved and therefore the
 most studied characters of fossil mammals
 are tooth patterns and dimensions. Leamy
 and Bader (1968) summarized measure-
 ments of the heritability of tooth dimen-
 sions in mammals, i.e., two species of ro-
 dents, Peromyscus leucopus and Mus
 musculus, for which the narrow heritability

 (additive genetic variance/o-2) was mea-
 sured, and Homo sapiens for which only
 the broad heritability (total genetic vari-
 ance/o-2) was measured. The narrow heri-
 tability is appropriate for our purposes
 (Falconer, 1960). Almost all the genetic
 variance for tooth dimensions in the ro-
 dents was additive and in both groups the
 molar widths exhibited a heritability of
 approximately 50% to 65%. In the ab-
 sence of further information it will be
 assumed that h2 = .5 for all of the mam-
 malian tooth characters considered below.

 Horse tooth characters.-Simpson (1951)
 stated that the major trends in the evo-
 lution of horse teeth involved in the change

 from browsing to grazing were adaptive,

 but that minor differences, characteristic

 of closely related genera and species, could

 be due to random events.

 The evidence of the horses thus indicates that
 evolution is not strictly oriented or guided
 and not strictly random, but that it is a mix-
 ture of the two. Some characteristics evolve
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 in a regular and systematic way while others
 evolve erratically and as if by chance. This is
 apparently true of all evolution, and it is one
 of the great and basic discoveries regarding
 the how of evolution.

 Later, Simpson (1953) wrote that there

 was a threshold or valley in the adaptive
 landscape between the two adaptive zones
 for the browsing and grazing ways of life.
 He proposed that chance events may have
 played an important role in the crossing
 of this threshold. Data presented by
 Simpson (1953) on the rates of evolution
 of horse tooth characters will be examined
 with the above models to see whether the
 evidence compels us to say that the evo-
 lution was entirely a result of natural se-
 lection or whether stochastic genetic
 events caused by finite population size
 may have been involved.

 Table la is a summary of data from
 Simpson (1953) on unworn upper third
 molar teeth of extinct horse species, each
 population having been sampled from a
 single time zone and locality. (The rate
 of evolution has previously been com-
 puted from these data by Haldane, 1949.)
 The original data has been transformed to
 natural logarithms, z = lny, to make the

 variance independent of the mean as is
 assumed in the model. This can be done
 without recourse to the individual mea-
 surements because the coefficient of vari-
 ation is small (Wright, 1952; Lewontin,
 1966) by taking the mean and standard
 deviation on the log scale to be z = lny
 and o- = =o-,/y. The coefficient of
 variation on the original scale is then given
 by C- on the log scale.

 This sequence was thought by Simpson
 (1953) to be a direct line of descent, at
 least to the level of genus. Table lb
 shows the amounts of change in the aver-
 age phenotype in units of phenotypic stan-

 dard deviations, z/lo, and the time in gen-
 erations between the different species.

 From considerations of the age distri-

 bution at death and by analogy with

 modern horses, Van Valen (1964) esti-

 mated the generation time, G, of another

 species of Merychippus, M. primus, to be
 about four years and this will be used for

 the transition from Merychippus to Neo-
 hipparion. Because the smaller species
 probably had shorter generation times, it
 is reasonable to take G as two years for
 Hyracotherium and three years for Meso-

 hippus.
 The minimum mortality rates necessary

 to explain the observed transitions entirely
 by natural selection are given in Table ic.
 The largest of these is 2 selective deaths
 per million individuals per generation,
 which corresponds to a truncation point
 4.6o- from the average phenotype. This is
 extremely weak selection.

 We next consider the alternative hy-
 pothesis of selective neutrality. Table Id
 gives the effective population sizes (N')
 at which there is a 5% chance of evolution
 by random genetic drift at a rate equal to
 or greater than that observed. The small-
 est of these effective population sizes is
 10,000 and some are much larger. Since
 the effective population size may be much
 less than the average actual size, especially
 with polygamy and fluctuation in num-
 bers (Crow and Kimura, 1970), the ob-
 served rates of evolution could have oc-
 curred by random genetic drift in part of
 the main range of the species or in rather
 large isolates which reached a higher adap-
 tive peak for some other character (either
 by genetic drift or natural selection in a
 different environment) and then reinvaded
 the main range, replacing the original
 population.

 From the evolutionary rates alone it is
 not possible to reject the hypothesis that
 the evolution of these characters was
 caused by random genetic drift. Neither
 does the direction of evolution in the en-
 tire radiation of horses (of which we have
 examined only a single lineage) rule out
 randomness for paracone height and ecto-

 loph length insofar as they are linear mea-

 sures indicative of overall body size and
 several lines of pygmy horses arose inde-
 pendently (Simpson, 1951). The direc-

 tion of evolution for relative tooth height,
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 TABLE la. Means and standard deviations of horse tooth characters after transformation to the nat-

 ural log scale. The average a- is the square root of the average a2, weighted by the degrees of freedom
 (d.f.). The original data are from Simpson (1953). One species, Hyohippus osborni, was omitted be-
 cause its a-2 was much larger than the weighted average of the other a-2, due to statistical (d.f. = 3) and/
 or stratigraphic sampling errors; in any case it did not represent an unusual rate of evolution in com-
 parison to those given.

 In (paracone/
 ectoloph)

 In paracone height In ectoloph length X 100 Age

 X 106
 Species z a- z a- years d.f.

 A. Hyracotherium borealis 1.54 .062 2.11 .056 4.04 .032 50 10

 B. Mesohippus bairdi 2.12 .048 2.48 .046 4.25 .045 30 13

 C. Merychippus paniensis 3.53 .059 2.99 .053 5.14 .043 15 12

 D. Neohipparion occidentale 3.96 .046 3.03 .053 5.53 .038 8 4

 average a- .055 .052 .041

 TABLE lb. Amounts of morphological change in units of phenotypic standard deviations (average a-)
 from Table la. See text for estimated generation times.

 (z/la)

 In (paracone/ t
 Transition In paracone height In ectoloph length ectoloph) X 100 generations

 A-B 10.6 7.1 5.1 10X 106

 B-C 25.6 9.8 21.7 5 X 106

 C-D 7.8 0.8 9.5 1.75 X 106

 A-D 44.0 17.7 36.3 16.75 X 106

 TABLE 1C. Minimum amounts of selection (proportion culled per generation) necessary to explain the
 transitions in Table ib, calculated from formula (12) using h2 = .5 and assuming no genetic drift.

 minimum selective mortality

 In (paracone/
 Transition In paracone height In ectoloph length ectoloph) X 100

 A-B 4 X 10-7 3 X 10-7 2 X 10-7

 B-C 2 X 10-6 8 X 10-7 2 X 10-6

 C-D 2 X 10-' 2 X 10-7 2 X 10-6

 A-D 1X104 4X 10-7 9X10-7

 TABLE id. Effective population sizes for rejection of the neutral hypothesis at the 95% level of con-
 fidence for the transitions in Table lb, calculated from formula (19) using hl2 = .5.

 N*

 In (paracone/
 Transition In paracone height In ectoloph length ectoloph) X 100

 A-B 2 X 105 4 X 10 7 X 10'

 B-C 1 X 104 1 X 105 2 X 104

 C-D 6 X 105 5 X 106 4 X 104

 A-D 2 X 104 1 X 10 2 X 104
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 (paracone height/ectoloph length) X 100,
 however was a rather general trend in al-

 most all lines toward increased hypsodonty

 and this can be taken as evidence that
 natural selection was at least involved in

 the evolution of hypsodonty; this does
 not necessarily mean that the entire

 change was directed by natural selection.
 Though the adaptive significance of hyp-

 sodonty is known (allowing the teeth to
 wear longer with the abrasive food of
 grazers) it is not obvious that its evolu-

 tion was favored by natural selection at
 every point along the way. The hypoth-
 esis suggested by Simpson, that genetic
 drift enabled some populations to cross
 a threshold between adaptive zones for
 browsing and grazing, remains to be ex-
 amined.

 Using Figure 2, various hypotheses con-
 cerning an adaptive threshold can be eval-
 uated. Suppose that Hyracotherium was
 under stabilizing selection for relative
 tooth height so that the threshold between
 the browsing and grazing zones was more
 than a few phenotypic standard deviations
 away from the optimum in the adaptive
 zone of Hyracotherium. The transitions
 in Table lb all have h2t 106 to 107. It
 can then be seen from Fig. 2 that even
 very weak stabilizing selection will usu-
 ally prevent a single population from
 moving more than a few phenotypic stan-
 dard deviations away from the optimum
 unless the effective population size is less
 than a few hundred. However, if there
 were many larger isolates, a small propor-
 tion might have crossed such a threshold.
 Therefore, unless there is reason to believe
 that stabilizing selection was at least mod-
 erately strong, the mechanism of allopatric
 speciation involving genetic drift across
 an adaptive threshold in an isolated popu-

 lation cannot be ruled out. Van Valen
 (1963) has in fact reported high inten-

 sities of selection on several tooth char-

 acters of Merychippus primus, using age-
 group (indicated by tooth wear) analysis,
 but it is not clear whether they are repre-

 sentative of the entire evolution, as that

 population seems to have been preserved
 through some catastrophe (see Kurten,
 1953).

 Tooth and skull characters of oreo-
 donts.-Two of the major lines of descent
 of the oreodonts, pig-like artiodactyls of
 North America, were traced by Bader
 (1955) through the middle and late
 Eocene. Linear measurements of 23 char-
 acters of the teeth and skull were tabu-
 lated for five populations in each of two

 sub-families, the Merycochoerinae and
 the Merychyinae. In both groups almost
 all the characters evolved in a correlated
 way as a result of changes in overall body
 size. Thus a single character can give a
 good indication of the rate of evolution
 for the entire set of linear measurements,
 though differences in the variability and
 heritability of the characters may cause
 additional differences in estimates of
 minimum selective mortalities and N*. A
 tooth character in the more rapidly
 evolving sub-family, the Merycocherinae,
 is analyzed here because there is some
 indication that h2 = .5 is a reasonable
 estimate of tooth dimensions in mam-
 malian populations (see above). The gen-
 eration time of the oreodonts has been
 estimated by Bader (1955) to be about 3
 years, by comparison with their closest
 living relatives, sheep, goats, and pigs.
 Statistics for the populations are given in
 Table 3a. Again the data has been trans-
 formed to natural logarithms. All popula-
 tions were sampled from the Great Plains
 area except Brachycrus buwaldi which is
 from the Barstow formation of southern
 California. The coefficients of variation
 of skull characters of the oreodonts are
 somewhat larger than those of living arti-
 odactyls (Yaklokov, 1974, p. 290), pos-
 sibly indicating spatial and/or temporal
 lumping of samples, though they are un-
 likely to be inflated by more than a factor
 of 2 and this would not change the quali-
 tative nature of the results.

 Table 2b shows the minimum selective
 mortalities necessary to explain these
 morphological changes. The largest of
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 TABLE 2a. Means and standard deviations of upper third molar length in a subfamily of oreodonts,
 after transformation to the natural log scale. The average a- is calculated as in Table la. The original
 data are from Bader (1955).

 In M3 length

 Species z a- d.f.

 A. Merycochoerus matthewi 3.68 .064 10

 B. Merycochoerus proprius 3.73 .052 10

 C. Brachycrus wilsoni 3.61 .064 12

 D. Brachycrus buwaldi 3.53 .052 17

 E. Brachycrus siouense 3.53 .062 33

 average a- .059

 TABLE 2b. Amounts of morphological change for various phylogenetic transitions in Table 2a. The
 number of generations was estimated from Figure 1 of Bader (1955), which indicates that all of the
 transitions took about 3 X 106 years, and using G = 3 years/generation.

 t minimum
 Transition z/a- generations selection N*

 A-B +0.8 1 X 105 3 X 10-7 3 X 106

 B-C -2.0 1 X 105 8 X 10-7 5 X 105

 B-D -3.4 1 X 10 1 X 10- 2 X 105

 C-E -1.2 1 X16o 5 X 10-7 1 X 106

 these is one selective death per million
 individuals per generation, which corre-
 sponds to a truncation point 4.7oc away
 from the average phenotype. Again this

 is extremely weak selection, leading to the
 conjecture that this evolution might have
 been the result of random genetic drift.

 The effective population sizes (N*) at
 which there is a 5% chance of morpho-
 logical change at least as large as those ob-

 served are given in Table 2b. The smallest
 of these effective population sizes is
 200,000. Thus these events could have
 occurred by random genetic drift in quite
 large populations.

 A tooth character of Hyopsodus.-Gin-
 gerich (1974) constructed a stratigraphic
 record of tooth size (log length x width
 of the lower first molar) in the early
 Eocene condylarth Hyopsodus. Five pop-
 ulations chosen from the most well de-
 fined parts of his phylogeny are listed in
 Table 3a. These populations are all from
 the same locality where Hyopsodus is the
 most abundant fossil mammal. Since

 condylarths were primitive mammals, the
 heritability of this tooth character will be
 taken as h2 = .5 based on the data given
 above for living mammals. Romer (1966)
 states that Hyopsodus was about the size
 and proportions of a hedgehog, and Gazin
 (1968) also makes extensive comparison
 between Hyopsodus and hedgehogs of the
 genus Erinaceus. Deansely (1934) re-
 ports that female European hedgehogs,
 Erinaceus europaeus, become sexually ma-
 ture in less than one year and are capable
 of bearing two litters in the breeding sea-
 son; the average lifespan in nature is
 probably much less than the maximum
 longevity in captivity which is 6 years
 (Walker et al., 1968). Thus the gener-
 ation time of Hyopsodus was probably
 about 1 to 2 years. To be conservative
 G = 2 years/generation will be used.
 From Gingerich's estimate of the sedimen-
 tation rate (20 feet in 6 X 104 years) the
 time in generations for various transitions
 in the phylogeny are given in Table 3b
 along with the amounts of morphological

This content downloaded from 73.251.11.157 on Thu, 20 May 2021 16:43:11 UTC
All use subject to https://about.jstor.org/terms



 332 RUSSELL LANDE

 TABLE 3a. Means and standard deviations of a tooth character (log length X width of M1) of
 Hyopsodus from five stratigraphic levels. These populations were chosen from among those reported
 by Gingerich (1974) for large sample size and to avoid those he thought represented two overlapping
 populations which later diverged. The average a- is calculated as in Table la.

 log length X width of Ml

 stratigraphic
 Species z af level (feet) d.f.

 A. H. loomisi 1.00 .042 340 15
 B. H. minor 0.87 .041 1320 6
 C. H. miticulus 1.16 .033 1200 12
 D. H. powellianus 1.38 .035 1380 28
 E. H. lysitensis 1.02 .032 1480 11

 average a .036

 TABLE 3b. Amounts of morphological change in units of phenotypic standard deviations (average
 a) for various phylogenetic transitions in Table 3a. The transition A-E is not given because there
 is almost no net change in the average phenotype, as the transitions A-C and C-E have nearly canceled.
 Divergence times in generations were calculated with G = 2 years/generation. Minimum selective mor-
 tality rates (assuming no genetic drift) and effective population sizes for the rejection of the neutral
 hypothesis at the 95% confidence level are tabulated in the last two columns.

 t minimum
 Transition z/a generations selection N*

 A-B -3.8 1.5 X 106 1 X i o1 2 X 105

 A-C +4.4 1.3 X 106 1 X lo- 1 X l0'

 C-D +6.1 0.27 X 106 1 X 10- 1 X 104

 C-E -3.8 0.42 X 10i' 4 X 10-6 6 X 104

 A-D +10.4 1.6 X 106 3 X 10-6 3 X 104

 change in units of phenotypic standard

 deviations.

 The minimum mortality rates necessary
 to explain these transitions by natural se-
 lection are also listed in Table 3b. The
 largest of these is one selective death per

 100,000 individuals per generation, corre-
 sponding to a truncation point 4.3o away
 from the average phenotype. Again this
 is very weak selection.

 The effective population sizes which
 would produce at least the observed rate
 of evolution by genetic drift 5%, of the
 time (N*) are large, the smallest being

 10,000. Because the effective population
 sizes estimated in Table 3b are so large
 (and yet underestimate the average actual

 size), this evolution may have been caused
 by random genetic drift in populations suf-

 ficiently large to leave an abundant fossil

 record. Neither can randomness be ruled

 out from the direction of evolution since
 there is no overall trend in this phylogeny.

 SUMMARY

 The present paper is an attempt to pro-

 vide a set of models which will be more
 useful in the analysis of macro-evolu-
 tionary events than the classical models of
 population genetics. This is accomplished
 by placing increased emphasis on pheno-

 typic parameters. While it is not possible
 to be completely successful in describing
 evolution in purely phenotypic terms, it
 seems that in many circumstances appro-
 priate for natural populations this can be
 done.

 In the first section, Simpson's concept

 of adaptive zones is clarified by the con-
 struction of an adaptive topography for

 phenotypes, similar to Wright's adaptive

 topography for gene frequencies. This
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 shows that for most phenotypic characters
 under natural selection, the evolution of
 the average phenotype in a population is
 always toward an adaptive zone of high

 mean fitness (W) in the phenotype space.
 Frequency-dependent selection may cause

 the average phenotype to evolve away
 from its adaptive zone, decreasing the
 mean fitness of individuals in the popu-
 lation; different types of frequency-de-

 pendent selection are classified as to
 whether or not they lead to such mala-
 daptive evolution.

 A simple formula for estimating the

 minimum selective mortality per genera-
 tion necessary to explain observed rates
 of phenotypic evolution is derived (as-
 suming that genetic drift was not in-
 volved). The minimum mortality rates
 needed to explain observed rates of evo-
 lution in tooth characters of Tertiary
 mammals are very small, typically about
 one selective death per million individuals
 per generation.

 This leads to consideration of the hy-
 pothesis that these changes were caused
 by random genetic drift. Using statistical
 tests, it is found that the observed evolu-
 tion of these mammalian tooth characters
 could have occurred by random genetic
 drift in rather large populations, with ef-
 fective sizes in the tens or hundreds of
 thousands. Such statistical tests would be
 most interesting in cases where the adap-

 tive significance of an evolutionary event
 is uncertain.

 Other hypotheses are also examined, in-
 cluding the existence of a selective thresh-
 old between two adaptive zones which
 might have been crossed by random ge-
 netic drift. The models indicate that if

 stabilizing selection is weak and an adap-
 tive threshold is not very far away, ran-
 dom genetic drift between adaptive zones
 may be an important mechanism of evo-

 lution in populations of effective size in

 the hundreds or thousands. These results

 support the contention that random ge-
 netic drift may play a significant role in
 phenotypic evolution.
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